Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như đề bài sai đó bạn. \(x^2+y^2+z^2\)=0 nê x=y=z=0, vì sao lại có 2(x+y+z+3/2)=0 được
\(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)
\(P=\left(-x^3\left(y^2-z\right)\right)+xy^3-y^3z^2+yz^3-x^2z^3+x^2y^2z^2-xyz\)
\(P=\left(-x^3\left(y^2-z\right)\right)+\left(xy^3-xyz\right)-\left(y^3z^2-yz^3\right)+\left(x^2y^2z^2-x^2z^3\right)\)
\(P=\left(-x^3\left(y^2-z\right)\right)+\left(xy\left(y^2-z\right)\right)-\left(yz^2\left(y^2-z\right)\right)+\left(x^2z^2\left(y^2-z\right)\right)\)
\(P=\left(-x^3+xy-yz^2+x^2z^2\right)\left(y^2-z\right)\)
\(P=\left(\left(x^2z^2-x^3\right)-\left(yz^2-xy\right)\right)\left(y^2-z\right)\)
\(P=\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\left(y^2-z\right)\)
\(P=\left(\left(x^2-y\right)\left(z^2-x\right)\right)\left(y^2-z\right)\)
\(P=\left(a.c\right).b\)
\(P=a.b.c\)
Vậy giá trị của P không phụ thuộc vào biến x;y;z (điều cần chứng minh)
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+3-2x-2y-2z\ge0\)
\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)
Dáu "=" xảy ra \(\Leftrightarrow\) \(x=y=z=1\)
a,b,c,d > 0 ta có:
- a < b nên a.c < b.c
- c < d nên c.b < d.b
Áp dụng tính chất bắc cầu ta được: a.c < b.c < b.d hay a.c < b.d (đpcm)
bài này từ giả thiết thì bn liên tưởng đến a3+b3+c3=3abc
mk nghĩ bài này thiếu đk
bạn chịu khó gõ link này lên google
https://olm.vn/hoi-dap/detail/60436537466.html
Ta có : \(x^2-xy=y^2-yz=z^2-zx\)Cộng 3 vế , suy ra :
\(x^2-xy+y^2-yz+z^2-zx=0\)\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Do \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0}\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}< =>x=y=z}\)
Khi đó ta được : \(M=\frac{x}{z}+\frac{z}{y}+\frac{y}{x}=1+1+1=3\)( do x=y=z )
Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath
Ta có : \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\) \(\Rightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=x+y+z\)
\(\Rightarrow\frac{x^2}{y+z}+\frac{xy+xz}{y+z}+\frac{y^2}{z+x}+\frac{xy+yz}{z+x}+\frac{z^2}{x+y}+\frac{zx+zy}{x+y}\)\(=x+y+z\)
\(\Rightarrow P+\frac{x\left(y+z\right)}{y+z}+\frac{y\left(x+z\right)}{x+z}+\frac{z\left(x+y\right)}{x+y}=x+y+z\)
\(\Rightarrow P+x+y+z=x+y+z\Rightarrow P=0\)
Vậy P = 0
Đề sai rồi nếu là vầy thì mình làm dc x+y+z=1 và x/(y+z)+y/(z+x)+z/(x+y)=1.Tính x^2/(y+z)+y^2/(x+z)+z^2/(x+y)+?