K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2018

\(x,y,z>0\Rightarrow\left(x+y\right)+z>=2\sqrt{\left(x+y\right)z}\Rightarrow1>=2\sqrt{\left(x+y\right)z}\Rightarrow1>=4\left(x+y\right)z\)(bđt cosi)

\(M=\frac{x+y}{xyz}=\frac{1\left(x+y\right)}{xyz}>=\frac{4\left(x+y\right)z\left(x+y\right)}{xyz}=\frac{4\left(x+y\right)^2z}{xyz}>=4\cdot\frac{\left(2\sqrt{xy}\right)^2z}{xyz}=\frac{4\cdot4xyz}{xyz}=4\cdot4=16\)

dấu = xảy ra khi \(\hept{\begin{cases}x=y=\frac{1}{4}\\z=\frac{1}{2}\end{cases}}\)

vậy min M là 16 khi \(x=y=\frac{1}{4}:z=\frac{1}{2}\)

16 tháng 8 2019

Ta có

\(x+y+z=1\Leftrightarrow\left(x+y+z\right)^2=1\Leftrightarrow\left[\left(x+y\right)+z\right]^2=1\\ \Leftrightarrow1=\left[\left(x+y\right)+z\right]^2\ge4\left(x+y\right)z\left(bđtAM-GM\right)\\ \Leftrightarrow\frac{x+y}{xyz}\ge\frac{4\left(x+y\right)^2z}{xyz}\ge\frac{4\cdot4xy\cdot z}{xyz}=16\)

(nhân cả hai vế với \(\frac{x+y}{xyz}\))

Vậy min A = 16 khi

\(\left\{{}\begin{matrix}x+y=z\\x=y\\x+y+z=1\end{matrix}\right.\Leftrightarrow x=y=\frac{1}{4},z=\frac{1}{2}\)

P.s: Cái chỗ bđt AM-GM bạn có thể thay bằng việc c/m bđt dưới để áp dụng vào bài toán:

\(\left(a+b\right)^2\ge4ab\)

9 tháng 4 2017

có thể nhiều cách giải hãy chọn 1 cách

9 tháng 4 2017

khó hiểu

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

tôi mong các bn đừng làm như vậy nha

7 tháng 11 2017

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web

NV
20 tháng 6 2020

\(2=x+y+z\ge2\sqrt{x\left(y+z\right)}\Rightarrow x\left(y+z\right)\le1\)

\(P=\frac{1}{x}\left(\frac{y+z}{yz}\right)\ge\frac{1}{x}\left(\frac{y+z}{\frac{1}{4}\left(y+z\right)^2}\right)=\frac{4}{x\left(y+z\right)}\ge4\)

\(P_{min}=4\) khi \(\left\{{}\begin{matrix}x=1\\y=z=\frac{1}{2}\end{matrix}\right.\)

10 tháng 9 2017

x+y+z=(x+y)+z=1 => [(x+y)+z]2=1

Ta có: \(1=\left[\left(x+y\right)+z\right]^2\ge4\left(x+y\right)z\)

Mặt khác: \(\left(x+y\right)^2\ge4xy\)

Suy ra 1.(x+y)2 \(\ge\)4(x+y)z.4xy<=>(x+y)2\(\ge\)16xyz(x+y) \(\Leftrightarrow x+y\ge16xyz\)\(\Leftrightarrow A=\frac{x+y}{xyz}\ge16\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=z\\x=y\end{cases}}\) kết hợp với điều kiện ban đầu x+y+z=1,giải hệ ra <=> x=y=1/4; z=1/2

Vậy minA=16 khi x=y=1/4; z=1/2

1 tháng 4 2018

ta có 
P = 1/16x + 1/4y + 1/z = (1/16x + 4/16y + 16/16z) 
áp dụng BĐT Bunhiacopski ta có 
(1/16x + 4/16y + 16/16z)*(16x + 16y + 16z) >= (1 + 2 + 4)^2 = 49 
=> P.16 >= 49 hay P >= 49/16 
dấu = xảy ra khi 
1/(16x)^2 = 1/64y^2 = 1/16z^2 và x + y + z = 1 
<> 1/16x = 1/8y = 1/4z và x + y + z = 1 
<> 4x = 2y = z và x + y + z = 1 
<> x = 1/7 và y = 2/7 và z = 4/7

10 tháng 9 2022

banhqua

loading...

 

 

 

5 tháng 3 2020

cậu tự mà làm đi sao cứ bắt người khác làm hộ vậy