Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x=2y\Rightarrow\frac{x}{y}=\frac{2}{3}\)
\(\frac{x}{yz}:\frac{y}{zx}=\frac{xzx}{yzy}=\frac{x^2}{y^2}=\frac{2^2}{3^2}=\frac{4}{9}\)
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\Rightarrow\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(z+x\right)}\)
\(\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}\Rightarrow z\left(x+y\right)=x\left(y+z\right)\Rightarrow xz+yz=xy+xz\Rightarrow yz=xy\Rightarrow z=x\)
CM tương tự ta cũng có : \(x=y;y=z\)
\(\Rightarrow x=y=z\) Thay vào B ta được :
\(B=\frac{x^3+y^3+z^3}{x^2y+y^2z+z^2x}=\frac{x^3+x^3+x^3}{x^2x+x^2x+x^2x}=\frac{3x^3}{3x^3}=1\)
\(\frac{3x}{2.5}+\frac{3x}{5.8}+\frac{3x}{8.11}+\frac{3x}{11.14}=\frac{1}{21}\)
\(\Leftrightarrow x\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\right)=\frac{1}{21}\)
\(\Leftrightarrow x\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\right)=\frac{1}{21}\)
\(\Leftrightarrow x\left(\frac{1}{2}-\frac{1}{14}\right)=\frac{1}{21}\)
\(\Leftrightarrow\frac{3}{7}x=\frac{1}{21}\)
\(\Leftrightarrow x=\frac{1}{9}\)
\(\frac{zx}{yz}=\frac{1}{2}\Rightarrow\frac{x}{y}=\frac{1}{2}\)
\(\frac{x}{yz}:\frac{y}{xz}=\frac{x}{yz}.\frac{xz}{y}=\frac{x^2}{y^2}\)
Mà \(\frac{x}{y}=\frac{1}{2}\Rightarrow\left(\frac{x}{y}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
Vậy \(\frac{x}{yz}:\frac{y}{zx}=\frac{1}{4}\)
Ta có
\(3x=2y=>y=\frac{3}{2}x\)
Ta có
\(\frac{x}{yz}:\frac{y}{zx}=\frac{x}{yz}.\frac{zx}{y}=\frac{x^2}{y^2}=\frac{x^2}{\left(\frac{3}{2}x\right)^2}=\frac{x^2}{\frac{9}{4}x^2}=\frac{4}{9}\)
tick nha