K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz+z+1}{xz+z+1}=1\)

=>đpcm

12 tháng 12 2016

2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1

= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1

= xz/1+xz+z + 1/z+1+xz + z/xz+z+1

= xz+1+x/1+xz+x = 1 (đpcm)

16 tháng 12 2015

\(3x=2y\Rightarrow\frac{x}{y}=\frac{2}{3}\)

\(\frac{x}{yz}:\frac{y}{zx}=\frac{xzx}{yzy}=\frac{x^2}{y^2}=\frac{2^2}{3^2}=\frac{4}{9}\)

21 tháng 3 2017

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\Rightarrow\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(z+x\right)}\)

 \(\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}\Rightarrow z\left(x+y\right)=x\left(y+z\right)\Rightarrow xz+yz=xy+xz\Rightarrow yz=xy\Rightarrow z=x\)

CM tương tự ta cũng có : \(x=y;y=z\)

\(\Rightarrow x=y=z\) Thay vào B ta được :

\(B=\frac{x^3+y^3+z^3}{x^2y+y^2z+z^2x}=\frac{x^3+x^3+x^3}{x^2x+x^2x+x^2x}=\frac{3x^3}{3x^3}=1\)

16 tháng 12 2015

Ta có

\(3x=2y=>y=\frac{3}{2}x\)

Ta có

\(\frac{x}{yz}:\frac{y}{zx}=\frac{x}{yz}.\frac{zx}{y}=\frac{x^2}{y^2}=\frac{x^2}{\left(\frac{3}{2}x\right)^2}=\frac{x^2}{\frac{9}{4}x^2}=\frac{4}{9}\)

tick nha