K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 6 2020

\(VT=\frac{\left(yz\right)^2}{x^2yz\left(y+z\right)}+\frac{\left(zx\right)^2}{xy^2z\left(z+x\right)}+\frac{\left(xy\right)^2}{xyz^2\left(x+y\right)}\)

\(VT=\frac{2\left(yz\right)^2}{xy+xz}+\frac{2\left(zx\right)^2}{xy+yz}+\frac{2\left(xy\right)^2}{xz+yz}\)

\(VT\ge\frac{2\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=xy+yz+zx\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt[3]{2}}\)

NV
12 tháng 2 2020

\(P=\frac{1}{2}\left(x^2+y^2+z^2\right)+\frac{x^2+y^2+z^2}{xyz}\)

\(P\ge\frac{3}{2}\sqrt[3]{\left(xyz\right)^2}+\frac{3\sqrt[3]{\left(xyz\right)^2}}{xyz}=\frac{3}{2}\sqrt[3]{\left(xyz\right)^2}+\frac{3}{\sqrt[3]{xyz}}\)

\(P\ge\frac{3}{2}\left(\sqrt[3]{\left(xyz\right)^2}+\frac{1}{\sqrt[3]{xyz}}+\frac{1}{\sqrt[3]{xyz}}\right)\ge\frac{9}{2}\) (AM-GM trực tiếp biểu thức trong ngoặc)

Dấu "=" xảy ra khi \(x=y=z=1\)

13 tháng 2 2020

Ai giải hộ câu này nhanh đi mà

1 tháng 4 2019
https://i.imgur.com/XIq9aow.jpg
5 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả