Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{\left(yz\right)^2}{x^2yz\left(y+z\right)}+\frac{\left(zx\right)^2}{xy^2z\left(z+x\right)}+\frac{\left(xy\right)^2}{xyz^2\left(x+y\right)}\)
\(VT=\frac{2\left(yz\right)^2}{xy+xz}+\frac{2\left(zx\right)^2}{xy+yz}+\frac{2\left(xy\right)^2}{xz+yz}\)
\(VT\ge\frac{2\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=xy+yz+zx\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt[3]{2}}\)
Áp dụng BĐT Cô - si cho 3 bộ số không âm
\(\Rightarrow\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(xz+1\right)^2}{x^2y^2z^2\left(yz+1\right)\left(xz+1\right)\left(xy+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)
Xét \(3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)
\(=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{xz+1}{z}\right)}\)
\(=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
Áp dụng BĐT Cô - si
\(\Rightarrow\left\{\begin{matrix}y+\frac{1}{x}\ge2\sqrt{\frac{y}{x}}\\z+\frac{1}{y}\ge2\sqrt{\frac{z}{y}}\\x+\frac{1}{z}\ge2\sqrt{\frac{x}{z}}\end{matrix}\right.\)
\(\Rightarrow\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)\ge8\)
\(\Rightarrow3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\ge3\sqrt[3]{8}\)
\(\Rightarrow3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\ge6\)
\(\Leftrightarrow3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\ge6\)
Mà \(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)
\(\Rightarrow\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge6\)
Vậy GTNN của \(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}=6\)
Từ giả thiết ta có: \(\left(x+y-z\right)^2=4xy\)
\(\Rightarrow P=x+y+z+\frac{2}{\left(x+y-z\right)^2.z}=x+y+z+\frac{8}{4z\left(x+y-z\right)^2}\)
Am-Gm:\(\left(x+y-z\right)\left(x+y-z\right).4z\le\frac{1}{27}\left(2x+2y+2z\right)^3=\frac{8}{27}\left(x+y+z\right)^3\)
\(\Rightarrow P\ge x+y+z+\frac{27}{\left(x+y+z\right)^3}\)
\(=\frac{x+y+z}{3}+\frac{x+y+z}{3}+\frac{x+y+z}{3}+\frac{27}{\left(x+y+z\right)^3}\ge4\sqrt[4]{\frac{\left(x+y+z\right)^3.27}{27.\left(x+y+z\right)^3}}=4\)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}x+y-z=4z\\x+y+z=3\\\left(x+y-z\right)^2=4xy\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}z=\frac{1}{2}\\x+y=\frac{5}{2}\\xy=1\end{matrix}\right.\)
\(\Rightarrow\left(x;y;z\right)=\left(\frac{1}{2};2;\frac{1}{2}\right)\) hoặc \(\left(2;\frac{1}{2};\frac{1}{2}\right)\). Nhưng vì đề bài cho đối xứng với cả 3 biến nên dấu = xảy ra tại hoán vị của \(\left(2;\frac{1}{2};\frac{1}{2}\right)\)
Vậy P min =4
Ngọc HnueThảo PhươngĐỖ CHÍ DŨNGMinh AnBăng Băng 2k6Vũ Minh Tuấn
Cộng hai vế phương trình lại ta có :
\(x+y-2z+z\left(x+y\right)=2\)
\(\Leftrightarrow\left(x+y\right)\left(z+1\right)-2\left(z+1\right)=0\Leftrightarrow\left(x+y-2\right)\left(z+1\right)=0\)
\(\Rightarrow x+y=2\) ( vì z dương nên không thể bằng -1 )
Ta có :
\(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}=2\)
Vậy Min T = 2 khi x = y = 1