Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Áp dụng BĐT Cauchy cho các số dương ta có:
\(\frac{1}{x}+\frac{x}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{y}+\frac{y}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{z}+\frac{z}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
Cộng theo vế các BĐT vừa thu được ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{4}\geq 3\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3-\frac{x+y+z}{4}\geq 3-\frac{6}{4}\) (do \(x+y+z\leq 6\) )
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=2\)
Bài 4:
Áp dụng BĐT Cauchy cho 3 số dương:
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq 3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z\)
Áp dụng BĐT Cô-si cho 2 số dương, ta có:
\(18x+\frac{2}{x}\ge2\sqrt{18x.\frac{2}{x}}=12\)
Chứng minh tương tự, ta có
\(18y+\frac{2}{y}\ge12\)
\(18z+\frac{2}{z}\ge12\)
Từ đó suy ra \(18\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge36\)(*)
Lại có \(x+y+z\le1\Rightarrow-\left(x+y+z\right)\ge-1\)(**)
Từ (*) và (**) suy ra \(18\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(x+y+z\right)\ge36-1\)
\(\Leftrightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)
Vậy \(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)với \(x+y+z\le1\)
Đường kính của một bánh xe là 0,6 m. Người đi xe đạp sẽ đi được bao nhiêu km, nếu bánh xe lăn trên mặt đất 1000 vòng?
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}\ge\dfrac{9}{6}=\dfrac{3}{2}\)
\(P=\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{2007}{xy+yz+zx}\)
\(P\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{2007}{\frac{1}{3}\left(x+y+z\right)^2}\)
\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{6021}{\left(x+y+z\right)^2}=\frac{6030}{\left(x+y+z\right)^2}\ge\frac{6030}{3^2}=670\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Áp dụng BĐT Côsi dưới dạng engel, ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)
⇒\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right).\frac{9}{x+y+z}\) = 9
Dấu "=" xảy ra ⇔ x = y = z
ý em là bài này hả ?
Cho các số dương x,y,z thoã mãn x+y+z=3 Tìm GTNN của 2(x^3+y^3+z^3)-(x^2+y^2+z^2)+2...
bài làm
ta có : x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-... bạn tự chứng minh nha, khai triển vế phải ra là xong :D)
sau đó áp dụng điều kiện x+y+z=3 rồi thay vào biểu thức ban đầu ta có
BT= 5(x^2+y^2+z^2)-6(xy+yz+zx) + 8xyz +3
= 8(x^2+y^2+z^2)-3(x+y+z)^2 + 8xyz +3
sau đó bạn áp dụng BDT xyz>=(x+y-z)(z+x-y)(y+z-x) sau đó thế x+y+z=3 và khai triển ra ta được
xyz>=(3-2z)(3-2y)(3-2z)=27-18(x+y+z)+1... -8xyz
thay x+y+z=3 ta được:
9xyz >=12(xy+yz+zx)-27
>> BT + xyz >= 8(x^2+y^2+z^2)-27+3+ 12(xy+yz+zx)-27=2(x^2+y^2+z^2)+6(x+y+z)^...
lại có 3(x^2+y^2+z^2)>=(x+y+z)^2 ( BDT Bunhiacopxki) >> (x^2+y^2+z^2)>=3
27xyz<=(x+y+z)^3>> xyz<=1
vậy BT + 1>= BT +xyz >= 6+ 54-51 <> BT >=8. ĐT khi x=y=z=1
nếu mua 1 cái số tiền phải trả là:
190000−190000×30%=133000(đồng)190000-190000×30%=133000(đồ��)
nếu mua cái thứ 2 thì số tiền phải trả là:
`190 000 - 190 000 × (30%+5%)=123 500 (đồng)
tổng số tiền phải trả là:
133000+123500=256500đồng133000+123500=256500đồ��
vì mẹ cho 260k260� nên và còn dư
mình xin lỗi mik gửi nhầm ạ