Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cauchy ta có:
\(\frac{x^2}{y-1}+4(y-1)\geq 2\sqrt{4x^2}=4x\)
\(\frac{y^2}{x-1}+4(x-1)\geq 2\sqrt{4y^2}=4y\)
Cộng theo vế:
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}+4(y-1)+4(x-1)\geq 4x+4y\)
\(\Leftrightarrow \frac{x^2}{y-1}+\frac{y^2}{x-1}\geq 8\)
Vậy \(P_{\min}=8\). Dấu bằng xảy ra khi \(x=y=2\)
Áp dụng BĐT AM-GM:
\(P=\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\)
\(=\dfrac{x^2}{y-1}+4\left(y-1\right)+\dfrac{y^2}{x-1}+4\left(x-1\right)-4\left(x+y\right)+8\)
\(\ge2\sqrt{\dfrac{x^2}{y-1}.4\left(y-1\right)}+2\sqrt{\dfrac{y^2}{x-1}.4\left(x-1\right)}-4\left(x+y\right)+8\)
\(\ge4\left(x+y\right)-4\left(x+y\right)+8=8\)
\(\Rightarrow P_{min}=8\Leftrightarrow x=y=2\)
\(\dfrac{x^2}{y-1}+4\left(y-1\right)\ge4x\) ; \(\dfrac{y^2}{x-1}+4\left(x-1\right)\ge4y\)
Cộng vế:
\(P+4\left(x+y\right)-8\ge4\left(x+y\right)\Rightarrow P\ge8\)
Dấu "=" xảy ra khi \(x=y=2\)
\(T=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}=\dfrac{x^2}{x\sqrt{y}}+\dfrac{y^2}{y\sqrt{x}}\ge\dfrac{\left(x+y\right)^2}{x\sqrt{y}+y\sqrt{x}}=\dfrac{1}{x\sqrt{y}+y\sqrt{x}}\)
\(\Rightarrow T\ge\dfrac{1}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\ge\dfrac{1}{\dfrac{\left(x+y\right)}{2}.\sqrt{2\left(x+y\right)}}=\sqrt{2}\)
\(\Rightarrow T_{min}=\sqrt{2}\) khi \(x=y=\dfrac{1}{2}\)
ta có:\(P=\sum\dfrac{y^2z^2}{x\left(y^2+z^2\right)}=\sum\dfrac{\dfrac{1}{x}}{\dfrac{1}{y^2}+\dfrac{1}{z^2}}\)
đặt \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\)thì giả thiết trở thành : \(a^2+b^2+c^2=1\).tìm Min \(P=\dfrac{a}{b^2+c^2}+\dfrac{b}{a^2+c^2}+\dfrac{c}{a^2+b^2}\)
ta có:\(\dfrac{a}{b^2+c^2}=\dfrac{a}{1-a^2}=\dfrac{a^2}{a\left(1-a^2\right)}\)
Áp dụng bất đẳng thức cauchy:
\(\left[a\left(1-a^2\right)\right]^2=\dfrac{1}{2}.2a^2\left(1-a^2\right)\left(1-a^2\right)\le\dfrac{1}{54}\left(2a^2+1-a^2+1-a^2\right)^3=\dfrac{4}{27}\)
\(\Rightarrow a\left(1-a^2\right)\le\dfrac{2}{3\sqrt{3}}\)\(\Rightarrow\dfrac{a^2}{a\left(1-a^2\right)}\ge\dfrac{3\sqrt{3}}{2}a^2\)
tương tự với các phân thức còn lại ta có:
\(P\ge\dfrac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\dfrac{3\sqrt{3}}{2}\)
đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
hay \(x=y=z=\sqrt{3}\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\\\dfrac{1}{z}=c\end{matrix}\right.\) Thì bài toán trở thành
Cho \(a^2+b^2+c^2=1\) tính GTNN của \(P=\dfrac{a}{b^2+c^2}+\dfrac{b}{c^2+a^2}+\dfrac{c}{a^2+b^2}\)
Ta có:
\(a^2+b^2+c^2=1\)
\(\Rightarrow a^2+b^2=1-c^2\)
\(\Rightarrow\dfrac{c}{a^2+b^2}=\dfrac{c^2}{c\left(1-c^2\right)}\)
Mà ta có: \(2c^2\left(1-c^2\right)\left(1-c^2\right)\le\dfrac{\left(2c^2+1-c^2+1-c^2\right)^3}{27}=\dfrac{8}{27}\)
\(\Rightarrow c\left(1-c^2\right)\le\dfrac{2}{3\sqrt{3}}\)
\(\Rightarrow\dfrac{c^2}{c\left(1-c^2\right)}\ge\dfrac{3\sqrt{3}c^2}{2}\)
\(\Rightarrow\dfrac{c}{a^2+b^2}\ge\dfrac{3\sqrt{3}c^2}{2}\left(1\right)\)
Tương tự ta có: \(\left\{{}\begin{matrix}\dfrac{b}{c^2+a^2}\ge\dfrac{3\sqrt{3}b^2}{2}\left(2\right)\\\dfrac{a}{b^2+c^2}\ge\dfrac{3\sqrt{3}a^2}{2}\left(3\right)\end{matrix}\right.\)
Từ (1), (2), (3) \(\Rightarrow P\ge\dfrac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\dfrac{3\sqrt{3}}{2}\)
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\) hay \(x=y=z=\sqrt{3}\)
Lời giải:
Ta có:
\(P=\frac{y-2}{x^2}+\frac{z-2}{y^2}+\frac{x-2}{z^2}\)
\(P=\frac{(x-1)+(y-1)}{x^2}-\frac{1}{x}+\frac{(y-1)+(z-1)}{y^2}-\frac{1}{y}+\frac{(x-1)+(z-1)}{z^2}-\frac{1}{z}\)
\(P=(x-1)\left(\frac{1}{x^2}+\frac{1}{z^2}\right)+(y-1)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+(z-1)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Áp dụng BĐT AM-GM:
\(\frac{1}{x^2}+\frac{1}{z^2}\geq \frac{2}{xz}; \frac{1}{x^2}+\frac{1}{y^2}\geq \frac{2}{xy}; \frac{1}{y^2}+\frac{1}{z^2}\geq \frac{2}{yz}\)
Kết hợp với \(x-1,y-1,z-1>0\) theo đkđb thì:
\(P\geq \frac{2(x-1)}{xz}+\frac{2(y-1)}{xy}+\frac{2(z-1)}{yz}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Leftrightarrow P\geq \frac{1}{x}+\frac{1}{y}+\frac{1}{z}-2\left(\frac{1}{xz}+\frac{1}{xy}+\frac{1}{yz}\right)\)
\(\Leftrightarrow P\geq \frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{2(x+y+z)}{xyz}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-2\)
\(\Leftrightarrow P\geq \frac{xy+yz+xz}{xyz}-2(*)\)
Ta có một hệ quả quen thuộc của BĐT AM-GM:
\((xy+yz+xz)^2\geq 3xyz(x+y+z)\)
Mà \(x+y+z=xyz\Rightarrow (xy+yz+xz)^2\geq 3x^2y^2z^2\)
\(\Rightarrow \frac{xy+yz+xz}{xyz}\geq \sqrt{3}(**)\)
Từ \((*); (**)\Rightarrow P\geq \sqrt{3}-2\)
Dấu bằng xảy ra khi \(x=y=z=\sqrt{3}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\geq \frac{(x+y+z)^2}{x+y+y+z+z+x}\)
\(\Leftrightarrow A\geq \frac{x+y+z}{2}\)
Áp dụng BĐT AM-GM:
\(\left\{\begin{matrix} x+y\geq 2\sqrt{xy}\\ y+z\geq 2\sqrt{yz}\\ z+x\geq 2\sqrt{zx}\end{matrix}\right.\)
\(\Rightarrow 2(x+y+z)\geq 2(\sqrt{xy}+\sqrt{yz}+\sqrt{zx})=2\)
\(\Rightarrow x+y+z\geq 1\)
Do đó: \(A\geq \frac{x+y+z}{2}\geq \frac{1}{2}\)
Vậy \(A_{\min}=\frac{1}{2}\)
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)
\(\sqrt{x\left(1-x\right)}\le\dfrac{1}{2}\left(x+1-x\right)=\dfrac{1}{2}\Rightarrow\sqrt{1-x}\le\dfrac{1}{2\sqrt{x}}\)
\(\Rightarrow\dfrac{1}{\sqrt{1-x}}\ge2\sqrt{x}\Rightarrow\dfrac{x}{\sqrt{1-x}}\ge2x\sqrt{x}\)
\(\Rightarrow P\ge2x\sqrt{x}+2y\sqrt{y}\ge2\sqrt{\left(x^2+y^2\right)\left(\sqrt{x}^2+\sqrt{y}^2\right)}\ge2\sqrt{\dfrac{\left(x+y\right)^2}{2}\left(x+y\right)}=\sqrt{2}\)
\(\Rightarrow P_{min}=\sqrt{2}\) khi \(x=y=\dfrac{1}{2}\)
Áp dụng bất đẳng thức AM - GM:
\(\dfrac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\dfrac{x^2}{y-1}.4\left(y-1\right)}\)
\(\Rightarrow\dfrac{x^2}{y-1}+4\left(y-1\right)\ge4x\).
Tương tự, \(\dfrac{y^2}{x-1}+4\left(x-1\right)\ge4y\).
Cộng vế với vế hai bđt trên rồi rút gọn ta được:
\(\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\ge8\)
\(\Rightarrow P\ge8+2013=2021\).
Đẳng thức xảy ra khi x = y = 2.
Vậy....