K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2022

Áp dụng BĐT phụ \(4xy\le\left(x+y\right)^2\le1\)\(\Leftrightarrow xy\le\frac{1}{4}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

Có \(K=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)\(=x^2+2x.\frac{1}{x}+\frac{1}{x^2}+y^2+2y.\frac{1}{y}+\frac{1}{y^2}\)\(=x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}+4\)

Áp dụng BĐT Cô-si cho 2 số dương \(x^2\)và \(y^2\), ta có: \(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)

Tương tự, ta có \(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)

Từ đó \(K\ge2xy+\frac{2}{xy}+4\)\(=32xy+\frac{2}{xy}-30xy+4\)

Áp dụng BĐT Cô-si cho 2 số dương \(32xy\)và \(\frac{2}{xy}\), ta có: \(32xy+\frac{2}{xy}\ge2\sqrt{32xy.\frac{2}{xy}}=16\)

Lại có \(xy\le\frac{1}{4}\Leftrightarrow-xy\ge-\frac{1}{4}\)nên \(K\ge16-\frac{30}{4}+4=\frac{25}{2}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

Vậy GTNN của K là \(\frac{25}{2}\)khi \(x=y=\frac{1}{2}\)

8 tháng 3 2022

\(K=x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+4=x^2+\dfrac{1}{16x^2}+y^2+\dfrac{1}{16y^2}+\dfrac{15}{16x^2}+\dfrac{15}{16y^2}+4\ge\dfrac{1}{2}+\dfrac{1}{2}+4+\dfrac{2.15}{16xy}=5+\dfrac{2.15}{16xy}\)

\(x+y\ge2\sqrt{xy};\Rightarrow2\sqrt{xy}\le x+y\le1\Rightarrow2\sqrt{xy}\le1\Leftrightarrow xy\le\dfrac{1}{4}\)

\(\Rightarrow K\ge5+\dfrac{2.15}{16.\dfrac{1}{4}}=\dfrac{25}{2}\)

24 tháng 7 2017

có x+y=1 =>\(\left\{{}\begin{matrix}x-1=-y\\y-1=-x\end{matrix}\right.\)khí đó ta có biểu thức tương đương :

\(\dfrac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\dfrac{\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)}{x^2y^2}=\dfrac{\left(-y\right)\left(x+1\right)\left(-x\right)\left(y+1\right)}{x^2y^2}=\dfrac{\left(x+1\right)\left(y+1\right)}{xy}=\dfrac{xy+x+y+1}{xy}=1+\dfrac{2}{xy}\)mà 1=x+y và x+y\(\ge\)2\(\sqrt{xy}\)=> (x+y)2 \(\ge\)4xy do đó 1= (x+y)2 \(\ge\)4xy

=> \(\dfrac{1}{4xy}\ge\dfrac{1}{\left(x+y\right)^2}=>\dfrac{1}{xy}\ge\dfrac{4}{\left(x+y\right)^2}=>\dfrac{2}{xy}\ge8\)=> biểu thức đã cho có GTNN là 9 khi x=y=\(\dfrac{1}{2}\)

18 tháng 12 2018

A=\(1+\dfrac{1}{y}+x+\dfrac{x}{y}+1+\dfrac{1}{x}+y+\dfrac{y}{x}\)
A= \(\left(x+\dfrac{1}{2x}\right)+\left(y+\dfrac{1}{2y}\right)+\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+2\)
Áp Dụng BĐT Cô si ta có:
\(\left(x+\dfrac{1}{2x}\right)\ge\sqrt{2}\); \(\left(y+\dfrac{1}{2y}\right)\ge\sqrt{2}\); \(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\ge2\)
\(\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge2\sqrt{\dfrac{1}{2x.2y}}=\dfrac{1}{\sqrt{xy}}\ge\dfrac{\sqrt{2}}{\sqrt{x^2+y^2}}=\sqrt{2}\)
suy ra A\(\ge4+3\sqrt{2}\)
Dấu = xảy ra
\(\left\{{}\begin{matrix}x=y\\x=\dfrac{1}{2x}\\y=\dfrac{1}{2y}\end{matrix}\right.\)
\(\Leftrightarrow\)x=y=\(\dfrac{\sqrt{2}}{2}\)
Vậy Min A=4+3\(\sqrt{2}\) khi x=y=\(\dfrac{\sqrt{2}}{2}\)

NV
18 tháng 12 2018

Trước hết ta có \(\dfrac{\left(x+y\right)^2}{2}\le x^2+y^2\Rightarrow x+y\le\sqrt{2\left(x^2+y^2\right)}=\sqrt{2}\)

\(A=1+\dfrac{1}{y}+x+\dfrac{x}{y}+1+\dfrac{1}{x}+y+\dfrac{y}{x}\)

\(A=2+x+y+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{x}{y}+\dfrac{y}{x}\ge2+x+y+\dfrac{4}{x+y}+2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}\)

\(\Rightarrow A\ge4+x+y+\dfrac{4}{x+y}=4+x+y+\dfrac{2}{x+y}+\dfrac{2}{x+y}\)

\(\Rightarrow A\ge4+2\sqrt{\left(x+y\right).\dfrac{2}{\left(x+y\right)}}+\dfrac{2}{\sqrt{2}}=4+3\sqrt{2}\)

\(\Rightarrow A_{min}=4+3\sqrt{2}\) khi \(x=y=\dfrac{1}{\sqrt{2}}\)

19 tháng 10 2018

Áp dụng bđt Cauchy-Schwarz:

\(A=\dfrac{1}{\sqrt{x\left(y+2z\right)}}+\dfrac{1}{\sqrt{y\left(z+2x\right)}}+\dfrac{1}{\sqrt{z\left(x+2y\right)}}\)

\(\ge\dfrac{\left(1+1+1\right)^2}{\sqrt{x\left(y+2z\right)}+\sqrt{y\left(z+2x\right)}+\sqrt{z\left(x+2y\right)}}\)

\(=\dfrac{9}{\sqrt{x\left(y+2z\right)}+\sqrt{y\left(z+2x\right)}+\sqrt{z\left(x+2y\right)}}\)

Áp dụng liên tiếp Bunyakovsky và AM-GM:

\(\left(\sqrt{x\left(y+2z\right)}+\sqrt{y\left(z+2x\right)}+\sqrt{z\left(x+2y\right)}\right)^2\)

\(\le\left(1^2+1^2+1^2\right)\left[x\left(y+2z\right)+y\left(z+2x\right)+z\left(x+2y\right)\right]\)

\(=3.3\left(xy+yz+xz\right)\)

\(3\left(xy+yz+xz\right)\le\left(x+y+z\right)^2=3\)

\(3.3\left(xy+yz+xz\right)\le3.3=9\)

\(\Leftrightarrow\sqrt{x\left(y+2z\right)}+\sqrt{y\left(z+2x\right)}+z\sqrt{\left(x+2y\right)}\le\sqrt{9}=3\)

\(\Leftrightarrow A\ge\dfrac{9}{3}=3."="\Leftrightarrow x=y=z=\dfrac{1}{\sqrt{3}}\)

6 tháng 10 2018

Ta có : \(\left(\sqrt{x-1}-1\right)^2\ge0\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+1\ge0\)

\(\Leftrightarrow x\ge2\sqrt{x-1}\)

\(\Leftrightarrow\dfrac{x}{\sqrt{x-1}}\ge2\)

Tương tự : \(\left(\sqrt{y-1}-1\right)^2\ge0\)

\(\Leftrightarrow y-1-2\sqrt{y-1}+1\ge0\)

\(\Leftrightarrow y\ge2\sqrt{y-1}\)

\(\Leftrightarrow\dfrac{y}{\sqrt{y-1}}\ge2\)

\(A=\dfrac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)

\(=\dfrac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\)

\(=\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\)

Theo BĐT Cô - si cho hai số không âm ta có :

\(\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\ge2\sqrt{\dfrac{x^2y^2}{\left(x-1\right)\left(y-1\right)}}=2.\dfrac{x}{\sqrt{x-1}}.\dfrac{y}{\sqrt{y-1}}\ge2.2.2=8\)

Vậy GTNN của A là 8 . Khi và chỉ khi \(x=y=2\)

6 tháng 10 2018

cảm ơn bạn!vui

6 tháng 11 2017

a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3

MInA=3<=>x=y=z=1

6 tháng 11 2017

b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)

5 tháng 6 2018

\(P=\dfrac{1}{2\left(x^2+y^2\right)}+\dfrac{4}{xy}+2xy\)

\(\Leftrightarrow2P=\dfrac{1}{x^2+y^2}+\dfrac{8}{xy}+4xy\)

\(\Leftrightarrow2P=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{29}{4xy}\)

Áp dụng BĐT AM - GM , ta có :

\(\Leftrightarrow\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{29}{4xy}\ge\dfrac{2}{\sqrt{\left(x^2+y^2\right)2xy}}+2\sqrt{\dfrac{1}{4xy}.4xy}+\dfrac{29}{4xy}\)

\(\Leftrightarrow2P\ge\)\(\dfrac{2}{\sqrt{\left(x^2+y^2\right)2xy}}+2+\dfrac{29}{4xy}\ge\dfrac{4}{\left(x+y\right)^2}+2+\dfrac{29}{\left(x+y\right)^2}\)

\(\Leftrightarrow2P\ge2+4+29=35\)

\(\Leftrightarrow P\ge\dfrac{35}{2}\)

\(\Rightarrow P_{Min}=\dfrac{35}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)