Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (2x^2 + 1)(x^2 - 2x - 1)
= 2x^4 - 4x^3 - 2x^2 + x^2 - 2x - 1
= 2x^4 - 4x^3 - x^2 - 2x - 1
2) (x^2 - x^4)/(x^2 - 1 + 1)
= (x^2.(1 - x^2))/(x^2 - 1 + 1)
= (x^2.(1 + x)(1 - x))/x^2
= (1 + x)(1 - x)
3) (3x + y)^3 + x^3 - 3x^2 + 3x + 1
Thay x = 1,1; y = -0,7 vào biểu thức, ta có:
= [3.1,1 + (-0,7)]^3 + 1,1^3 - 3.1,1^2 + 3.1,1 + 1
= 19,577
P= 3x2 - [2x2-3x(x-4)] với x=\(\frac{-3}{2}\)
\(\Rightarrow P=\frac{27}{4}-\left[\frac{9}{2}-\frac{99}{4}\right]=\frac{27}{4}+\frac{81}{4}=\frac{108}{4}=27\)
Q=(x2 + y2) (x2y+y3)-y(x4+y4)với x=\(\frac{-1}{2}\) và y=3
\(\Rightarrow Q=\frac{37}{4}.\frac{111}{4}-\frac{3891}{16}=\frac{4107}{16}-\frac{3891}{16}=\frac{216}{16}=\frac{27}{2}\)
\(A=4x^2-2\left(y+2,5x^2\right)+x^2-4y\)
\(=4x^2-2y-5x^2+x^2-4y=-6y\)
\(B=\left(x+y\right).\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-\left(x^5+y^5-8\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5-x^5-y^5+8\)
\(=8\)
Vậy BT B ko phụ thuộc vào biến
câu sau tương tự
\(5x\left(x+1\right)-3\left(x-5\right)+4\left(3x-6\right)=2x^2-7\)
\(\Rightarrow5x^2+5x-3x+15+12x-24=2x^2-7\)
\(\Rightarrow5x^2+14x-9=2x^2-7\Rightarrow5x^2+14x-9-2x^2+7=0\)
\(\Rightarrow3x^2+14x-2=0\)
\(\Rightarrow3\left(x^2+\frac{14}{3}x-\frac{2}{3}\right)=0\Rightarrow x^2+2.x.\frac{7}{3}+\frac{49}{9}-\frac{55}{9}=0\)
\(\Rightarrow\left(x+\frac{7}{3}\right)^2=\frac{55}{9}\Rightarrow x+\frac{7}{3}\in\left\{\sqrt{\frac{55}{9}};-\sqrt{\frac{55}{9}}\right\}\Rightarrow x\in\left\{\sqrt{\frac{55}{9}}-\frac{7}{3};-\sqrt{\frac{55}{9}}-\frac{7}{3}\right\}\)
Viết tổng sau dưới dạng tích và tính giá trị biểu thức với x = -8x=−8.
Bài 2 :
a. A = 2 ( x3 + y3 ) - 3 ( x2 + y2 ) với x + y = 1
=> A = 2 ( x + y ) ( x2 - xy + y2 ) - 3 [ ( x + y )2 - 2xy ]
=> A = 2 [ ( x + y )2 - 3xy ] - 3 ( 1 - 2xy )
=> A = 2 ( 1 - 3xy ) - 3 + 6xy
=> A = 2 - 6xy - 3 + 6xy
=> A = - 1
B = x3 + y3 + 3xy với x + y = 1
=> B = ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )
=> B = ( x + y )3 - 3xy ( x + y - 1 )
=> B = 13 - 3xy . 0
=> B = 1
Bài 1.
a) ( x - 1 )3 + ( 2 - x )( 4 + 2x + x2 ) + 3x( x + 2 ) = 16
<=> x3 - 3x2 + 3x - 1 + 8 - x3 + 3x2 + 6x = 16
<=> 9x + 7 = 16
<=> 9x = 9
<=> x = 1
b) ( x + 2 )( x2 - 2x + 4 ) - x( x2 - 2 ) = 15
<=> x3 + 8 - x3 + 2x = 15
<=> 2x + 8 = 15
<=> 2x = 7
<=> x = 7/2
c) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 9( x + 1 )2 = 15
<=> ( x - 3 )[ ( x - 3 )2 - ( x2 + 3x + 9 ) + 9( x2 + 2x + 1 ) = 15
<=> ( x - 3 )( x2 - 6x + 9 - x2 - 3x - 9 ) + 9x2 + 18x + 9 = 15
<=> ( x - 3 ).(-9x) + 9x2 + 18x + 9 = 15
<=> -9x2 + 27x + 9x2 + 18x + 9 = 15
<=> 45x + 9 = 15
<=> 45x = 6
<=> x = 6/45 = 2/15
d) x( x - 5 )( x + 5 ) - ( x + 2 )( x2 - 2x + 4 ) = 3
<=> x( x2 - 25 ) - ( x3 + 8 ) = 3
<=> x3 - 25x - x3 - 8 = 3
<=> -25x - 8 = 3
<=. -25x = 11
<=> x = -11/25
Bài 2.
a) A = 2( x3 + y3 ) - 3( x2 + y2 )
= 2( x + y )( x2 - xy + y2 ) - 3x2 - 3y2
= 2( x2 - xy + y2 ) - 3x2 - 3y2
= 2x2 - 2xy + 2y2 - 3x2 - 3y2
= -x2 - 2xy - y2
= -( x2 + 2xy + y2 )
= -( x + y )2
= -(1)2 = -1
b) B = x3 + y3 + 3xy
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )
= ( x + y )3 - 3xy( x + y - 1 )
= 13 - 3xy( 1 - 1 )
= 1 - 3xy.0
= 1