K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2020

Bài 2 : 

a. A = 2 ( x3 + y3 ) - 3 ( x2 + y2 ) với x + y = 1

=> A = 2 ( x + y ) ( x2 - xy + y2 ) - 3 [ ( x + y )- 2xy ]

=> A = 2 [ ( x + y )- 3xy ] - 3 ( 1 - 2xy )

=> A = 2 ( 1 - 3xy ) - 3 + 6xy

=> A = 2 - 6xy - 3 + 6xy

=> A = - 1

B = x3 + y3 + 3xy với x + y = 1

=> B = ( x+ 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )

=> B = ( x + y )3 - 3xy ( x + y - 1 )

=> B = 13 - 3xy . 0

=> B = 1

4 tháng 10 2020

Bài 1.

a) ( x - 1 )3 + ( 2 - x )( 4 + 2x + x2 ) + 3x( x + 2 ) = 16

<=> x3 - 3x2 + 3x - 1 + 8 - x3 + 3x2 + 6x = 16

<=> 9x + 7 = 16

<=> 9x = 9

<=> x = 1

b) ( x + 2 )( x2 - 2x + 4 ) - x( x2 - 2 ) = 15

<=> x3 + 8 - x3 + 2x = 15

<=> 2x + 8 = 15

<=> 2x = 7

<=> x = 7/2

c) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 9( x + 1 )2 = 15

<=> ( x - 3 )[ ( x - 3 )2 - ( x2 + 3x + 9 ) + 9( x2 + 2x + 1 ) = 15

<=> ( x - 3 )( x2 - 6x + 9 - x2 - 3x - 9 ) + 9x2 + 18x + 9 = 15

<=> ( x - 3 ).(-9x) + 9x2 + 18x + 9 = 15

<=> -9x2 + 27x + 9x2 + 18x + 9 = 15

<=> 45x + 9 = 15

<=> 45x = 6

<=> x = 6/45 = 2/15

d) x( x - 5 )( x + 5 ) - ( x + 2 )( x2 - 2x + 4 ) = 3

<=> x( x2 - 25 ) - ( x3 + 8 ) = 3

<=> x3 - 25x - x3 - 8 = 3

<=> -25x - 8 = 3

<=. -25x = 11

<=> x = -11/25

Bài 2.

a) A = 2( x3 + y3 ) - 3( x2 + y2 )

= 2( x + y )( x2 - xy + y2 ) - 3x2 - 3y2

= 2( x2 - xy + y2 ) - 3x2 - 3y2

= 2x2 - 2xy + 2y2 - 3x2 - 3y2

= -x2 - 2xy - y2

= -( x2 + 2xy + y2 )

= -( x + y )2

= -(1)2 = -1

b) B = x3 + y3 + 3xy 

= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy

= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )

= ( x + y )3 - 3xy( x + y - 1 )

= 13 - 3xy( 1 - 1 )

= 1 - 3xy.0

= 1

8 tháng 3 2019

xuống lớp 1 học bạn ơi

13 tháng 8 2019

Bn nên ra từng bài ra vậy ai làm cho . hum

3 tháng 8 2019

dấu <=> thứ 4 em làm nhầm rồi, 4x - 6x = - 2x chứ! Rồi tiếp theo em nên đưa về hằng đẳng thức chứ giải vậy ko đc đâu.

15 tháng 6 2016

\(A=4x^2-2\left(y+2,5x^2\right)+x^2-4y\)

\(=4x^2-2y-5x^2+x^2-4y=-6y\)

\(B=\left(x+y\right).\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-\left(x^5+y^5-8\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5-x^5-y^5+8\)

\(=8\)

Vậy BT B ko phụ thuộc vào biến

câu sau tương tự

\(5x\left(x+1\right)-3\left(x-5\right)+4\left(3x-6\right)=2x^2-7\)

\(\Rightarrow5x^2+5x-3x+15+12x-24=2x^2-7\)

\(\Rightarrow5x^2+14x-9=2x^2-7\Rightarrow5x^2+14x-9-2x^2+7=0\)

\(\Rightarrow3x^2+14x-2=0\)

\(\Rightarrow3\left(x^2+\frac{14}{3}x-\frac{2}{3}\right)=0\Rightarrow x^2+2.x.\frac{7}{3}+\frac{49}{9}-\frac{55}{9}=0\)

\(\Rightarrow\left(x+\frac{7}{3}\right)^2=\frac{55}{9}\Rightarrow x+\frac{7}{3}\in\left\{\sqrt{\frac{55}{9}};-\sqrt{\frac{55}{9}}\right\}\Rightarrow x\in\left\{\sqrt{\frac{55}{9}}-\frac{7}{3};-\sqrt{\frac{55}{9}}-\frac{7}{3}\right\}\)

15 tháng 6 2016

câu sau tự lm nhé,mk ko lm nữa đâu

21 tháng 11 2016

ôi mai dê

21 tháng 11 2016

mấy bài này max dễ bn đăng từng phần 1 mk lm cho

NM
9 tháng 8 2021

bài 1.

a.\(A=x^2-2xy+y^2+x^2+2xy+y^2=2\left(x^2+y^2\right)\)

b.\(B=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)=4xy\)

c.\(C=4a^2+4ab+b^2-\left(4a^2-4ab+b^2\right)=8ab\)

d.\(D=4x^2-4x+1-2\left(4x^2-12x+9\right)+4=-4x^2+20x-13\)

.bài 2

a.\(A=x^2+6x+9+x^2-9-2\left(x^2-2x-8\right)=10x+16;x=-\frac{1}{2}\Rightarrow A=9\)

b.\(B=9x^2+24x+16-x^2+16-10x=8x^2+14x+32\Rightarrow x=-\frac{1}{10}\Rightarrow B=\frac{767}{25}\)

c.\(C=x^2+2x+1-\left(4x^2-4x+1\right)+3\left(x^2-4\right)=6x-12\Rightarrow x=1\Rightarrow C=-6\)

d.\(D=x^2-9+x^2-4x+4-2x^2+8x=4x-5\Rightarrow x=-1\Rightarrow A=-9\)

9 tháng 8 2021

Trả lời:

Bài 1: Rút gọn biểu thức:

a) A = ( x - y )2 + ( x + y )2

= x2 - 2xy + y2 + x2 + 2xy + y2

= 2x2 + 2y2 

b) B = ( x + y )2 - ( x - y )2 

= x2 + 2xy + y2 - ( x2 - 2xy + y2 )

= x2 + 2xy + y2 - x2 + 2xy - y2

= 4xy

c) C = ( 2a + b )2 - ( 2a - b )2 

= 4a2 + 4ab + b2 - ( 4a2 - 4ab + b2 )

= 4a2 + 4ab + b2 - 4a2 + 4ab - b2 

= 8ab

d) D = ( 2x - 1 )2 - 2 ( 2x - 3 )2 + 4

= 4x2 - 4x + 1 - 2 ( 4x2 - 12x + 9 ) + 4

= 4x2 - 4x + 1 - 8x2 + 24x - 18 + 4

= - 4x2 + 20x - 13

Bài 2: Rút gọn rồi tính giá trị biểu thức:

a) A = ( x + 3 )2 + ( x - 3 )( x + 3 ) - 2 ( x + 2 )( x - 4 )

= x2 + 6x + 9 + x2 - 9 - 2 ( x2 - 2x - 8 ) 

= 2x2 + 6x - 2x2 + 4x + 16

= 10x + 16

Thay x = 1/2 vào A, ta có:

\(A=10.\left(-\frac{1}{2}\right)+16=-5+16=11\)

b) B = ( 3x + 4 )2 - ( x - 4 )( x + 4 ) - 10x

= 9x2 + 24x + 16 - x2 + 16 - 10x 

= 8x2 + 14x + 32

Thay x = - 1/10 vào B, ta có:

\(B=8.\left(-\frac{1}{10}\right)^2+14.\left(-\frac{1}{10}\right)+32=\frac{767}{25}\)

c) C = ( x + 1 )2 - ( 2x - 1 )2 + 3 ( x - 2 )( x + 2 )

= x2 + 2x + 1 - 4x2 + 4x - 1 + 3 ( x2 - 4 )

= - 3x2 + 6x + 3x2 - 12

= 6x - 12

Thay x = 1 vào C, ta có:

\(C=6.1-12=-6\)

d) D = ( x - 3 )( x + 3 ) + ( x - 2 )2 - 2x ( x - 4 ) 

= x2 - 9 + x2 - 4x + 4 - 2x2 + 8x

= 4x - 5

Thay x = - 1 vào D, ta có:

\(D=4.\left(-1\right)-5=-9\)

18 tháng 12 2017

4.a) \(2x^2-10x-3x-2x^2-26=0\)

\(-13x-26=0\Rightarrow-13\left(x+2\right)=0\)

\(\Rightarrow x=-2\)

b) \(2\left(x+5\right)-x^2-5x=0\)

\(2x+10-x^2-5x=0\Leftrightarrow-x^2-3x+10=0\)

\(-\left(x^2+3x-10\right)=0\)

\(-\left(x^2-2x+5x-10\right)=-\left(x\left(x-2\right)+5\left(x-2\right)\right)=0\)

\(-\left(x-2\right)\left(x+5\right)=0\)

\(\left\{{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

c) \(\left(2x-3\right)^2-\left(x+5\right)^2=0\)

\(\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)

\(\left(x-8\right)\left(3x+2\right)=0\)

\(\left\{{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)

d) \(x^3+x^2-4x-4=0\)

\(x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)

g) \(\left(x-1\right)\left(2x+3-x\right)=0\)

\(\left(x-1\right)\left(x+3\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

h) \(x^2-4x+8-2x+1=x^2-6x+9=0\)

\(\left(x-3\right)^2=0\Rightarrow x=3\)

1 tháng 8 2016

b) \(3x\left(x-1\right)^2-2x\left(x+3\right)\left(x-3\right)+4x\left(x-4\right)\)

\(=3x\left(x^2-2x+1\right)-2x\left(x^2-9\right)+4x^2-16x=3x^3-6x^2+3x-2x^3+18x+4x^2-16x\)\(=x^3-2x^2+5x\)

c) \(2\left(2x+5\right)^2-3\left(4x+1\right)\left(1-4x\right)=2\left(4x^2+20x+25\right)+3\left(16x^2-1\right)\)

\(=8x^2+40x+50+48x^2-3=56x^2+40x+47\)

d) \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)=x\left(x^2-16\right)-x^4+1=x^3-x^4-16x+1\)

e) \(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)=\left(y^2-9\right)\left(y^2+9\right)-y^4+4=y^4-81-y^2+4=-77\)

31 tháng 7 2016

Khủng bố