K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

tích đúng mình làm cho

6 tháng 7 2018

là sao ạk
giải giùm mình với ạk

15 tháng 7 2019

bài 2: a bạn có thể thêm bớt y^2 vào vế bên phải

bài 2 c thì bạn có thể mở ngoặc ở vế phải rồi tính sau đó áp dụng hđt

21 tháng 4 2017

undefined

Ta có \(\left(x+y\right)^2=4\Rightarrow x^2+y^2+2xy=4\Rightarrow xy=\frac{4-10}{2}=-3\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8-6xy=8-6.\left(-3\right)=26\)

Học tốt!!!!!!

9 tháng 3 2020

Ta có: x + y = 2

<=> (x + y)2 = 22

<=> x2 + y2 + 2xy = 4

<=> 10 + 2xy = 4

<=> 2xy = -6

<=> xy = -3

Khi đó: M = x3 + y3 = (x  + y)(x2 - xy + y2) = 2(10 + 3) = 2.13 = 26

21 tháng 2 2021

x + y = 2

=> ( x + y )2 = 4

<=> x2 + 2xy + y2 = 4

<=> 2xy + 10 = 4

<=> 2xy = -6

<=> xy = -3

Ta có : M = x3 + y3 = ( x + y )( x2 - xy + y2 ) = 2( 10 + 3 ) = 26

Ta có : \(x+y=2\)

\(\Rightarrow\left(x+y\right)^2=4\)

\(\Rightarrow x^2+y^2+2xy=4\)

Mà \(x^2+y^2=10\)

\(\Rightarrow10+2xy=4\)

\(\Rightarrow2xy=-6\)

\(\Rightarrow xy=-3\)

\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2\left(10+3\right)=2.13=26\)

Vậy \(x^3+y^3=26\)

24 tháng 7 2018

        \(x+y=2\)

\(\Rightarrow\)\(\left(x+y\right)^2=4\)

\(\Leftrightarrow\)\(x^2+y^2+2xy=4\)

\(\Leftrightarrow\)\(2xy=-6\)  do x2 + y2 = 10

\(\Leftrightarrow\)\(xy=-3\)

\(T=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=2^3-3.\left(-3\right).2=26\)

24 tháng 7 2018

Vì \(\left(x+y\right)=2\Rightarrow\left(x+y\right)^2=4\Leftrightarrow x^2+y^2+2xy=4\Leftrightarrow2xy=-6\Leftrightarrow xy=-3\)

\(T=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(\Rightarrow T=2.\left(10-xy\right)\)

\(\Rightarrow T=20-2xy=20+6=26\)

23 tháng 12 2018

1/ 

a) \(x^2+4y^2+4xy-16\)

\(=x^2+2.2xy+\left(2y\right)^2-4^2\)

\(=\left(x+2y\right)^2-4^2\)

\(=\left(x+2y-4\right)\left(x+2y+4\right)\)

23 tháng 12 2018

b) ta có:

\(\left(2x+y\right)\left(y-2x\right)+4x^2\)

\(=-\left(2x-y\right)\left(2x+y\right)+4x^2\)

\(=\left(2x\right)^2-\left[\left(2x\right)^2-y^2\right]\)

\(=\left(2x\right)^2-\left(2x\right)^2+y^2\)

\(=y^2\)

Vậy giá trị của biểu thức trên không phụ thuộc vào giá trị của x

nên tại y = 10

giá trị của biểu thức trên bằng y2 = 102 = 100