Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\) \(\Rightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=x+y+z\)
\(\Rightarrow\frac{x^2}{y+z}+\frac{xy+xz}{y+z}+\frac{y^2}{z+x}+\frac{xy+yz}{z+x}+\frac{z^2}{x+y}+\frac{zx+zy}{x+y}\)\(=x+y+z\)
\(\Rightarrow P+\frac{x\left(y+z\right)}{y+z}+\frac{y\left(x+z\right)}{x+z}+\frac{z\left(x+y\right)}{x+y}=x+y+z\)
\(\Rightarrow P+x+y+z=x+y+z\Rightarrow P=0\)
Vậy P = 0
\(x^3+y^3+z^3+x+y+z\ge2\sqrt{x^3.x}+2\sqrt{y^3.y}+2\sqrt{z^3.z}\)(BĐT Cô si)
\(VT\ge2\sqrt{x^4}+2\sqrt{y^4}+2\sqrt{z^4}\)
\(VT\ge2x^2+2y^2+2z^2=2\left(x^2+y^2+z^2\right)=6\)
dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x^2+y^2+z^2=3\\x^3=x;y^3=y;z^3=z\end{cases}< =>x=y=z=1}\)
\(x^3+y^3+z^3+x+y+z\ge6< =>ĐPCM\)
còn cách khác nè :p
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(x^3+y^3+z^3=\frac{x^4}{x}+\frac{y^4}{y}+\frac{z^4}{z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}=\frac{9}{x+y+z}\)
\(\Rightarrow x^3+y^3+z^3+x+y+z\ge\frac{9}{x+y+z}+\left(x+y+z\right)\ge2\sqrt{\frac{9}{x+y+z}\cdot\left(x+y+z\right)}=6\)( AM-GM )
=> đpcm . Dấu "=" xảy ra <=> x = y = z = 1