Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-2015x^3+2015x^2-2015x+2015\)
\(=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)(vì x=2014 nên 2015=x+1)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)
\(=1\)
\(A=-2\)
\(\Leftrightarrow5x^2+y^2+4xy-6x-2y=-2\)
\(\Leftrightarrow4x^2+x^2+y^2+4xy-4x-2x-2y+1+1=0\)
\(\Leftrightarrow\left(4x^2+4xy+y^2\right)-2\left(2x+y\right)+1+\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(2x+y\right)^2-2\left(2x+y\right)+1+\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+y-1\right)^2+\left(x-1\right)^2=0\)(1)
Mà \(\left(2x+y-1\right)^2+\left(x-1\right)^2\ge0\)nên (1) xảy ra
\(\Leftrightarrow\hept{\begin{cases}2x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-1\\x=1\end{cases}}\)
\(\Rightarrow B=1^{2015}.\left(-1\right)^{2016}-1^{2016}.\left(-1\right)^{2017}+2014\)
\(=1+1+2014=2016\)
Ta có: A = -2
=> 5x2 + y2 + 4xy - 6x - 2y = -2
=> 5x2 + y2 + 4xy - 6x - 2y + 2 = 0
=> (4x2 + 4xy + y2) - 2(2x + y) + 1 + (x2 - 2x + 1) = 0
=> (2x + y)2 - 2(2x + y) + 1 + (x - 1)2 = 0
=> (2x + y - 1)2 + (x - 1)2 = 0
<=> \(\hept{\begin{cases}2x+y-1=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}y=1-2x\\x=1\end{cases}}\)
<=> \(\hept{\begin{cases}y=1-2.1=-1\\x=1\end{cases}}\)
Với x = 1; y = -1 => B = 12015.(-1)2016 - 12016.(-1)2017 + 2014
= 1 + 1 + 2014 = 2016
Từ \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)
\(\Leftrightarrow\left(4x^2-4xy-4xz+y^2+2yz+z^2\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\Leftrightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
Dễ thấy: \(\left\{{}\begin{matrix}\left(2x-y-z\right)^2\ge0\\\left(y-3\right)^2\ge0\\\left(z-5\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)
Xảy ra khi \(\left\{{}\begin{matrix}\left(2x-y-z\right)=0\\\left(y-3\right)^2=0\\\left(z-5\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=5\end{matrix}\right.\)
Khi đó \(A=\left(4-4\right)^{2015}+\left(3-4\right)^{2015}+\left(5-4\right)^{2015}=0+1-1=0\)
Tìm giá trị nhỏ nhất, giá trị lớn nhất của A = x2 + y2, biết rằng :
x2(x2 + 2y2 - 3) + (y2 - 2)2 = 1
\(x^2\left(x^2+2y^2-3\right)+\left(y^2-2\right)^2=1\)
\(\Leftrightarrow x^4+2x^2y^2-3x^2+y^4-4y^2+4=1\)
\(\Leftrightarrow\left(x^4+2x^2y^2+y^4\right)-\left(4x^2+4y^2\right)+4+x^2=1\)
\(\Leftrightarrow\left(x^2+y^2\right)^2-4\left(x^2+y^2\right)+4=1-x^2\)
\(\Leftrightarrow\left(x^2+y^2-2\right)^2=1-x^2\le1\)
\(\Leftrightarrow-1\le x^2+y^2-2\le1\Rightarrow1\le x^2+y^2\le3\)
a)\(x^2+y^2>=\frac{\left(x+y\right)^2}{2}=2\)(tự cm : nhân chéo chuyển vế hoặc ghi áp dụng BĐT Bunhiacopxki đều được)
=>Min M=2
Dấu "=" xảy ra khi x=y=1
b)x-2y=3
=>x=2y+3
=>\(N=x^2-5y^2=\left(2y+3\right)^2-5y^2=-y^2+12y+9=-\left(y^2-12y+36\right)+45\)
\(N=-\left(y-6\right)^2+45< =45\)
=>Max N=45
Dấu = xảy khi \(\hept{\begin{cases}y-6=0\\x=2y+3\end{cases}< =>\hept{\begin{cases}y=6\\x=15\end{cases}}}\)