Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)
\(\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\Leftrightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
Do \(\hept{\begin{cases}\left(2x-y-z\right)^2\ge0\\\left(y-3\right)^2\ge0\\\left(z-5\right)^2\ge0\end{cases}\Rightarrow VT\ge0}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=y+z\\y=3\\z=5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}}\)
Khi đó \(P=\left(4-4\right)^{2018}+\left(3-4\right)^{2018}+\left(5-4\right)^{2018}\)
\(=0+\left(-1\right)^{2018}+1^{2018}\)
\(=2\)
Ta có:
\(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z=-34\)
\(\Leftrightarrow\) \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)
\(\Leftrightarrow\) \(4x^2-\left(4xy+4xz\right)+\left(y^2+2yz+z^2\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\Leftrightarrow\) \(4x^2-4x\left(y+z\right)+\left(y+z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
\(\Leftrightarrow\) \(\left[2x-\left(y+z\right)\right]^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
Mặt khác, ta lại có: \(\left[2x-\left(y+z\right)\right]^2\ge0;\) \(\left(y-3\right)^2\ge0\) và \(\left(z-5\right)^2\ge0\) với mọi \(x;\) \(y;\) \(z\)
nên \(\left[2x-\left(y+z\right)\right]^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)
Do đó, dấu \(''=''\) xảy ra \(\Leftrightarrow\) \(\left[2x-\left(y+z\right)\right]^2=0;\) \(\left(y-3\right)^2=0\) và \(\left(z-5\right)^2=0\)
\(\Leftrightarrow\) \(2x-\left(y+z\right)=0;\) \(y-3=0\) và \(z-5=0\)
\(\Leftrightarrow\) \(x=\frac{y+z}{2};\) \(y=3\) và \(z=5\)
Khi đó, \(x=\frac{3+5}{2}=\frac{8}{2}=4\)
Thay các giá trị trên của các biến \(x;\) \(y;\) \(z\) lần lượt vào biểu thức \(Q\), ta được:
\(Q=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}=2\)
Lời giải:
Ta có:
\(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)
\(\Leftrightarrow (4x^2-4xy+y^2)+2z^2+y^2-2z(2x-y)-6y-10z+34=0\)
\(\Leftrightarrow (2x-y)^2-2z(2x-y)+z^2+(y^2-6y+9)+(z^2-10z+25)=0\)
\(\Leftrightarrow (2x-y-z)^2+(y-3)^2+(z-5)^2=0\)
Vì \((2x-y-z)^2; (y-3)^2; (z-5)^2\geq 0, \forall x,y,z\). Do đó để \((2x-y-z)^2+(y-3)^2+(z-5)^2=0\) thì:
\((2x-y-z)^2=(y-3)^2=(z-5)^2=0\)
\(\Rightarrow \left\{\begin{matrix} x=4\\ y=3\\ z=5\end{matrix}\right.\)
Khi đó:
\(S=(4-4)^{2018}+(3-4)^{2019}+(5-4)^{2020}=0+(-1)+1=0\)
Bài 1a/
\(\frac{1}{1+x+xy}=\frac{xyz}{xyz+x+xy}=\frac{yz}{1+y+yz}\)
\(\frac{1}{1+z+xz}=\frac{y}{y+yz+xyz}=\frac{y}{1+y+yz}\)
Vậy \(M=\frac{1}{1+y+yz}+\frac{y}{1+y+yz}+\frac{yz}{1+y+yz}=1\)
Chiều về làm tiếp
Bài 1b:Lời giải này chủ yếu nhờ dự đoán trước Min là 2011/2012 đạt được khi x=2012
Ta có \(P=\frac{2012x^2-2.2012x+2012^2}{2012x^2}=\frac{\left(x-2012\right)^2+2011x^2}{2012x^2}\ge\frac{2011x^2}{2012x^2}=\frac{2011}{2012}\)
Bài 2: Dùng phân tích thành bình phương
\(10x^2+y^2+4z^2+6x-4y-4xz+5=\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)\)
\(=\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}}\)
Bài 3:
a/\(pt\Leftrightarrow\left(x+6\right)\left(x-5\right)\left(x^2-x+1\right)=0\Leftrightarrow x=-6,x=5\)
b/ta phân tích vế trái thành:\(\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
Từ \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)
\(\Leftrightarrow\left(4x^2-4xy-4xz+y^2+2yz+z^2\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\Leftrightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
Dễ thấy: \(\left\{{}\begin{matrix}\left(2x-y-z\right)^2\ge0\\\left(y-3\right)^2\ge0\\\left(z-5\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)
Xảy ra khi \(\left\{{}\begin{matrix}\left(2x-y-z\right)=0\\\left(y-3\right)^2=0\\\left(z-5\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=5\end{matrix}\right.\)
Khi đó \(A=\left(4-4\right)^{2015}+\left(3-4\right)^{2015}+\left(5-4\right)^{2015}=0+1-1=0\)
cho mik hỏi cách tính 2x-y-z là j