K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

\(\sqrt{x+2}\) +y3=\(\sqrt{y+2}\) +y3

\(\Rightarrow\) x=y

ta co :B=x2+2xy-2y2+2y+10 

\(\Leftrightarrow\)B=x2+2x2-2x2+2x+10

B=x2+2x+10

B=(x+1)2+9\(\ge\) 9 vì (x+1)2 \(\ge\)  0 vs \(\forall\) x

\(\Rightarrow\) minB=9 \(\Leftrightarrow\) x=y=-1

10 tháng 1 2018

bài của bọn mk như này cx khá giống của bạn nên bạn có thể tham khảo :

Cho x,y thỏa √x+2+y3=√y+2+y3

Tìm gtnn của B= x2 +2xy-2y2 +2y+10

GIẢI

√x+2+y3=√y+2+y3 => x=y

ta có : B= x2 + 2xy - 2y2 + 2y + 10 <=> B=x2 +2x2 - 2x2 + 2x + 10

B = x2 + 2x +10

B = (x+1)2 + 9 >= 9 vì (x+1)2 >= 0 với ∀ x

=> min B = 9 <=> x=y=1

30 tháng 9 2016

Ta có y2 = 1 - x2

=> 1 - x2 \(\ge0\)

<=> \(-1\le x\le1\)

Kết hợp với điều kiện ban đầu ta được

\(0\le x\le1\)

P = \(\sqrt{1+2x}+\sqrt{1+2\sqrt{1-x^2}}\)

Hàm số này bị chặn 2 đầu nên ta xét x = 0 và x = 1 thì P = 1 + \(\sqrt{3}\)

Vậy GTNN là 1 + \(\sqrt{3}\)khi x = (0;1)

7 tháng 5 2015

biết chết liền, vì em học lớp 1 mà. Xin lỗi chị nha. Có gì thì chị lên lớp hỏi bạn chị ấy

(x+2)2 + 2y(x+1) +y2 = -\(\sqrt{2x-3y-3}\)

\(\Leftrightarrow\)\(\left(x+y+1\right)^2=-\sqrt{2x-3y-3}\)

Ta có: \(\left(x+y+1\right)^2\ge o\)

Dấu "=" xảy ra khi và chỉ khi (x+y+1)2=0<=>x+y+1=0 (1)

Lại có: \(\sqrt{2x-3y-3}\ge0\)\(\Leftrightarrow-\sqrt{2x-3y-3}\le0\)

Dấu "=" xảy ra khi và chỉ khi \(\sqrt{2x-3y-3}=0\)<=> 2x-3y-3=0(2)

Từ (1) và (2), ta có 1 hệ 2 phương trình hai ẩn, bạn dùng phương pháp thế để giài

Kết quả: x=0; y=-1

NV
18 tháng 9 2019

ĐKXĐ: ...

\(\Leftrightarrow\left(x+1\right)^2+2\left(x+1\right).y+y^2+\sqrt{2x-y-4}=0\)

\(\Leftrightarrow\left(x+y+1\right)^2+\sqrt{2x-y-4}=0\)

Do \(\left\{{}\begin{matrix}\left(x+y+1\right)^2\ge0\\\sqrt{2x-y-4}\ge0\end{matrix}\right.\)

Nên đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x+y+1=0\\2x-y-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)