Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài của bọn mk như này cx khá giống của bạn nên bạn có thể tham khảo :
Cho x,y thỏa √x+2+y3=√y+2+y3
Tìm gtnn của B= x2 +2xy-2y2 +2y+10
GIẢI
√x+2+y3=√y+2+y3 => x=y
ta có : B= x2 + 2xy - 2y2 + 2y + 10 <=> B=x2 +2x2 - 2x2 + 2x + 10
B = x2 + 2x +10
B = (x+1)2 + 9 >= 9 vì (x+1)2 >= 0 với ∀ x
=> min B = 9 <=> x=y=1
Ta có y2 = 1 - x2
=> 1 - x2 \(\ge0\)
<=> \(-1\le x\le1\)
Kết hợp với điều kiện ban đầu ta được
\(0\le x\le1\)
P = \(\sqrt{1+2x}+\sqrt{1+2\sqrt{1-x^2}}\)
Hàm số này bị chặn 2 đầu nên ta xét x = 0 và x = 1 thì P = 1 + \(\sqrt{3}\)
Vậy GTNN là 1 + \(\sqrt{3}\)khi x = (0;1)
biết chết liền, vì em học lớp 1 mà. Xin lỗi chị nha. Có gì thì chị lên lớp hỏi bạn chị ấy
(x+2)2 + 2y(x+1) +y2 = -\(\sqrt{2x-3y-3}\)
\(\Leftrightarrow\)\(\left(x+y+1\right)^2=-\sqrt{2x-3y-3}\)
Ta có: \(\left(x+y+1\right)^2\ge o\)
Dấu "=" xảy ra khi và chỉ khi (x+y+1)2=0<=>x+y+1=0 (1)
Lại có: \(\sqrt{2x-3y-3}\ge0\)\(\Leftrightarrow-\sqrt{2x-3y-3}\le0\)
Dấu "=" xảy ra khi và chỉ khi \(\sqrt{2x-3y-3}=0\)<=> 2x-3y-3=0(2)
Từ (1) và (2), ta có 1 hệ 2 phương trình hai ẩn, bạn dùng phương pháp thế để giài
Kết quả: x=0; y=-1