Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xài am-gm ta có:
\(\left(x-8y\right)+\frac{1}{y\left(x-8y\right)}+8y\ge3\sqrt[3]{\left(x-8y\right)\frac{1}{x-8y}8y}=6\)
Dấu = khi \(x-8y=\frac{1}{y\left(x-8y\right)}=8y\Leftrightarrow\hept{\begin{cases}x=4\\y=\frac{1}{4}\end{cases}}\)
tìm Min của:
\(\sqrt{\dfrac{x^3}{x^3+8y^3}}+\sqrt{\dfrac{4y^3}{y^3+\left(x+y\right)^3}}\) với x,y >0
\(T=\sqrt{\dfrac{x^3}{x^3+8y^3}}+\sqrt{\dfrac{4y^3}{y^3+\left(x+y\right)^3}}\)
\(=\dfrac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\dfrac{2y^2}{\sqrt{y\left(y^3+\left(x+y\right)^3\right)}}\)
\(=\dfrac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\dfrac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)
\(\ge\dfrac{2x^2}{2x^2+4y^2}+\dfrac{4y^2}{2y^2+\left(x+y\right)^2}\)\(\ge\dfrac{2x^2}{2x^2+4y^2}+\dfrac{4y^2}{4y^2+2x^2}\)
\(\ge\dfrac{2x^2+4y^2}{2x^2+4y^2}=1\)
2. Xem tại đây
1. \(P=\frac{1}{\sqrt{x.1}}+\frac{1}{\sqrt{y.1}}+\frac{1}{\sqrt{z.1}}\)
\(\ge\frac{1}{\frac{x+1}{2}}+\frac{1}{\frac{y+1}{2}}+\frac{1}{\frac{z+1}{2}}\)
\(=\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{2.\left(1+1+1\right)^2}{x+y+z+3}=\frac{18}{3+3}=3\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=z=1\)
1 ) có cách theo cosi đó
áp dụng cosi cho 3 số dương ta có \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}+x\ge3\sqrt[3]{\frac{1}{\sqrt{x}}\times\frac{1}{\sqrt{x}}\times x}=3\sqrt[3]{1}=3\)(1)
\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}+y\ge3\)(2)
\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}+z\ge3\)(3)
cộng các vế của (1),(2),(3), đc \(2\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)+\left(x+y+z\right)\ge9\Rightarrow2P+3\ge9\Rightarrow P\ge3\)
minP=3 khi x=y=z=1
\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)
\(\Leftrightarrow2x^2+2y^2\ge x^2+y^2+2xy\)
\(\Leftrightarrow x^2+y^2-2xy\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)( luôn đúng )
Dấu " = " xảy ra <=> x=y
Áp dụng
\(x^2+y^2\ge\frac{1}{2}.\left(x+y\right)^2=\frac{1}{2}.3^2=4,5\)
Dấu " = " xảy ra <=> x=y=1,5
Ta co:
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{3}\ge\frac{\left(1+\frac{9}{x+y+z}\right)^2}{3}=\frac{100}{3}\)
Dau '=' xay ra khi \(x=y=z=\frac{1}{3}\)
Vay \(A_{min}=\frac{100}{3}\)khi \(x=y=z=\frac{1}{3}\)
Ta có: P = \(P=\left(1+\frac{1}{x}\right)\left(1-\frac{1}{y}\right).\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\) (HĐT số 3)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(x-1\right)\left(y-1\right)}{xy}\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{-x.-y}{xy}\)
= (1 + 1/x)(1 + 1/y)
= 1 + 1/(xy) + (1/x + 1/y) = 1 + 1/(xy) + (x + y)/xy
= 1 + 1/(xy) + 1/(xy) = 1 + 2/(xy)
Áp dụng bđt: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow P\ge\frac{1+2}{\frac{1}{4}}=9\)
Vậy PMin = 9 xảy ra \(\Leftrightarrow x=y=\) \(\frac{1}{2}\)
Vì x>8y>0 áp dụng BĐT Cauchy cho 3 số dương
\(P=x+\dfrac{1}{y\left(x-8y\right)}=\left(x-8y\right)+8y+\dfrac{1}{y\left(x-8y\right)}\ge3\sqrt[3]{\left(x-8y\right).8y.\dfrac{1}{y\left(x-8y\right)}}=3\sqrt[3]{8}=6\)
Đẳng thức xảy ra \(\Leftrightarrow x-8y=8y=\dfrac{1}{y\left(x-8y\right)}\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{1}{4}\end{matrix}\right.\)
vì x>8y>0 nên x-8y>0
Ta có : P=\(x+\dfrac{1}{y\left(x-8y\right)}\)= x-8y+8y+ \(\dfrac{1}{y\left(x-8y\right)}\)
ÁP dụng BĐT côsy cho 3 số dương dạng a+b+c\(\ge\) 3\(\sqrt[3]{abc}\) ta đc:
P \(\ge\)3\(\sqrt[3]{\left(x-8y\right).8y.\dfrac{1}{y\left(x-8y\right)}}\)\(\ge\) 3.2=6
Vậy Pmin=6 khi đó dấu "=" xẫy ra khi : \(x-8y=8y=\dfrac{1}{y\left(x-8y\right)}\)
<=> \(\left\{{}\begin{matrix}x=4\\y=\dfrac{1}{4}\end{matrix}\right.\)