K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)

= \(\left[\left(x+y+z\right)-\left(x+y\right)\right]^2\)

= \(z^2\)

18 tháng 6 2017

Ta có:(x + y + z)2 - 2(x + y + z) (x + y) + (x + y)2

=[(x+y+z)-(x+y)]2=z2

9 tháng 10 2016

mk chỉ làm bài 1 và 1 câu bài 2 vi no tuong duong

1. x+x +2 = 86

x = số thứ nhất = 42

x+2 = số t2    = 44

2.a) x2-6x +10 = (x-3)2 +1 >0 với mọi x

(vì (x-3)2 >= 0)

12 tháng 10 2016

b) x2 - 4x +3 = (x -1)(x -3) =0

x -1 = 0

x = 1

x-3 = 0

x = 3

26 tháng 10 2017

\(A=16x^2+8x+3\\ A=16x^2+8x+1+2\\ A=\left(16x^2+8x+1\right)+2\\ A=\left(4x+1\right)^2+2\\ Do\left(4x+1\right)^2\ge0\forall x\\ \Rightarrow A=\left(4x+1\right)^2+2\ge2\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(4x+1\right)^2=0\\ \Leftrightarrow4x+1=0\\ \Leftrightarrow4x=-1\\ \Leftrightarrow x=-\dfrac{1}{4}\\ \text{Vậy }A_{\left(Min\right)}=2\text{ khi }x=-\dfrac{1}{4}\\ \)

\(B=y^2-5y+8\\ B=y^2-5y+\dfrac{25}{4}+\dfrac{7}{4}\\ B=\left(y^2-5y+\dfrac{25}{4}\right)+\dfrac{7}{4}\\ B=\left[y^2-2\cdot y\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]+\dfrac{7}{4}\\ B=\text{ }\left(y-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\\ Do\text{ }\left(y-\dfrac{5}{2}\right)^2\ge0\forall x\\ \Rightarrow B=\left(y-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(y-\dfrac{5}{2}\right)^2=0\\ \Leftrightarrow y-\dfrac{5}{2}=0\\ \Leftrightarrow y=\dfrac{5}{2}\\ \text{Vậy }B_{\left(Min\right)}=\dfrac{7}{4}\text{ }khi\text{ }y=\dfrac{5}{2}\)

\(C=2x^2-2x+2\\ C=2x^2-2x+\dfrac{1}{2}+\dfrac{3}{2}\\ C=\left(2x^2-2x+\dfrac{1}{2}\right)+\dfrac{3}{2}\\ C=2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{2}\\ C=2\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{3}{2}\\ C=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{2}\\ Do\text{ }\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\\ \Rightarrow C=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{2}\ge\dfrac{3}{2}\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(x-\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{1}{2}=0\\ \Leftrightarrow x=\dfrac{1}{2}\\ \text{Vậy }C_{\left(Min\right)}=\dfrac{3}{2}\text{ }khi\text{ }x=\dfrac{1}{2}\)

\(D=9x^2-6x+25y^2+10y+4\\ D=9x^2-6x+25y^2+10y+1+1+2\\ D=\left(9x^2-6x+1\right)+\left(25y^2+10y+1\right)+2\\ D=\left[\left(3x\right)^2-2\cdot3x\cdot1+1^2\right]+\left[\left(5y\right)^2+2\cdot5y\cdot1+1^2\right]+2\\ D=\left(3x-1\right)^2+\left(5y+1\right)^2+2\\ Do\text{ }\left(3x-1\right)^2\ge0\forall x\\ \left(5y+1\right)^2\ge0\forall y\\ \Rightarrow\left(3x-1\right)^2+\left(5y+1\right)^2\ge0\forall x;y\\ \Rightarrow D=\left(3x-1\right)^2+\left(5y+1\right)^2+2\ge2\forall x;y\\ \text{Dấu “=” xảy ra khi : }\left\{{}\begin{matrix}\left(3x-1\right)^2=0\\\left(5y+1\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3x-1=0\\5y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=1\\5y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=-\dfrac{1}{5}\end{matrix}\right.\\ \text{Vậy }D_{\left(Min\right)}=2\text{ khi }x=\dfrac{1}{3};y=-\dfrac{1}{5}\)

26 tháng 10 2017

Câu 2

\(M=x^2+6x+1\\ M=x^2+6x+9-8\\ M=\left(x^2+6x+9\right)-8\\ M=\left(x+3\right)^2-8\\ Do\text{ }\left(x+3\right)^2\ge0\forall x\\ M=\left(x+3\right)^2-8\ge-8\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(x+3\right)^2=0\\ \Leftrightarrow x+3=0\\ \Leftrightarrow x=-3\\ \text{Vậy }M_{\left(Min\right)}=-8\text{ khi }x=-3\)

\(N=10y-5y^2-3\\ N=10y-5y^2-5+2\\ N=-\left(5y^2-10y+5\right)+2\\ N=-5\left(y^2-2y+1\right)+2\\ N=-5\left(y-1\right)^2+2\\ Do\left(y-1\right)^2\ge0\forall x\\ \Rightarrow-\left(y-1\right)^2\le0\forall x\\ \Rightarrow-5\left(y-1\right)^2\le0\forall x\\ \Rightarrow N=-5\left(y-1\right)^2+2\le2\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(y-1\right)^2=0\\ \Leftrightarrow y-1=0\\ \Leftrightarrow y=1\\ \text{Vậy }N_{\left(Max\right)}=2\text{ khi }y=1\)

26 tháng 9 2017

a) \(x^3-\dfrac{1}{9}x=0\)

\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)

\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)

b) \(x\left(x-3\right)+x-3=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)

c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)

\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)

\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)

d) \(x^2\left(x-3\right)+27-9x=0\)

\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)

\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)

\(\Rightarrow x-3=0\Rightarrow x=3.\)

4 tháng 10 2017

\(\dfrac{2}{5}\)

7 tháng 8 2017

Câu h đề không đẹp lắm, sửa thành-2x nha

f) x2-2x+5

=x2-2x+1+4

=(x-1)2+4

Vì: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)

Min = 4 khi x=1

g) 2x2-6x

= \(\sqrt{2x}^2-2.\sqrt{2x}.\dfrac{3\sqrt{2}}{2}+\left(\dfrac{3\sqrt{2}}{2}\right)^2-\left(\dfrac{3\sqrt{2}}{2}\right)^2\)

= \(\left(\sqrt{2x}-\dfrac{3\sqrt{2}}{2}\right)^2-\dfrac{9}{2}\)

Tương tự bài trên

h) x2+y2-2x+6y+10

=(x2-2x+1)+(y2+6y+9)

=(x-1)2+(y+3)2

Min=0 khi x=1; y=-3

7 tháng 8 2017

nói thật bn xạo lz vc đề thế nào thì để đó chứ ko đẹp thì nó ko có Min à

9 tháng 8 2017

c) Đặt \(t=x^2+x+1\) thì

\(t\left(t+1\right)-12=t^2+t-12=\left(t-3\right)\left(t+4\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+5\right)=\left(x+2\right)\left(x-1\right)\left(x^2+x+5\right)\)

d) \(\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(t=x^2+7x+11\) thì

\(\left(t-1\right)\left(t+1\right)-24=t^2-1-24=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)\)

\(=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

Rồi nha bạn ok

9 tháng 8 2017

phân tích đa thức thành nhân tử

a) \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)

\(\Leftrightarrow\left(x^2+x\right)^2-5\left(x^2+x\right)+3\left(x^2+x\right)-15\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-5\right)+3\left(x^2+x-5\right)\)

\(\Leftrightarrow\left(x^2+x+3\right)\left(x^2+x-5\right)\)

b) \(x^2+2xy+y^2-x-y-12=0\)

\(\Leftrightarrow\left(x+y\right)^2-\left(x+y\right)-12=0\)

\(\Leftrightarrow\left(x+y\right)^2-4\left(x+y\right)+3\left(x+y\right)-12=0\)

\(\Leftrightarrow\left(x+y-4\right)\left(x+y+3\right)=0\)

18 tháng 6 2017

Bài 1:

Áp dụng hằng đẳng thức số 5 ta có:

\(1-\left(1-3\right)^3=1-\left(1-3.1.3+3.1.3^2-3^2\right)\)

\(=1-\left(1-9+27-9\right)=1-1+9-27+9=-9\)

Chúc bạn học tốt!!!

18 tháng 6 2017

Bài 1:

\(1-\left(1-3\right)^3=1+2^3=\left(1+2\right)\left(1-2+4\right)\)

hđt: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

Bài 3:

a, \(A=4x-x^2=-x^2+4x\)

\(=-\left(x^2-4x+4-4\right)\)

\(=-\left[\left(x-2\right)^2-4\right]\)

\(=-\left(x-2\right)^2+4\)

Ta có: \(-\left(x-2\right)^2\le0\)

\(\Leftrightarrow A=-\left(x-2\right)^2+4\le4\)

Dấu " = " xảy ra khi \(-\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy \(MAX_A=4\) khi x = 2

b, \(B=x-x^2=-x^2+x\)

\(=-\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}\right)\)

\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\right]\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

Dấu " = " khi \(-\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(MAX_B=\dfrac{1}{4}\) khi \(x=\dfrac{1}{2}\)

c, \(C=2x-2x^2-5\)

\(=-2\left(x^2-x+\dfrac{5}{2}\right)\)

\(=-2\left(x^2-2.x\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{9}{4}\right)\)

\(=-2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\right]\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le\dfrac{-9}{2}\)

Dấu " = " khi \(-2\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(MAX_C=\dfrac{-9}{2}\) khi \(x=\dfrac{1}{2}\)

Bài 4:

\(M=x^2+y^2-x+6y+10\)

\(=\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

Ta có: \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\Leftrightarrow M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy \(MIN_M=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2},y=-3\)

6 tháng 4 2017

Lời giải

\(\left(x^2+x\right)^2+\left(x^2+x\right)=y^2-3\)

\(\left(2x^2+2x+1\right)^2=4y^2-11\)

\(\Leftrightarrow Z^2-P^2=11\Rightarrow\left\{{}\begin{matrix}Z^2=36\\P^2=25\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=\pm3\\2x^2+2x+1=\pm5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=\pm3\\\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\end{matrix}\right.\)