K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2019

\(x^4+y^4+\dfrac{1}{xy}=xy+2\)

\(\Leftrightarrow\left(x^2-y^2\right)^2=xy-\dfrac{1}{xy}+2-2x^2y^2\ge0\)

Đặt \(xy=a\)

\(\Rightarrow-2a^3+a^2+2a-1\ge0\)

\(\Leftrightarrow\left(a+1\right)\left(a-1\right)\left(1-2a\right)\ge0\)

Ta có a > 0

\(\Rightarrow\left(a-1\right)\left(2a-1\right)\le0\)

\(\Rightarrow\dfrac{1}{2}\le a\le1\) \(\Rightarrow.......\)

3 tháng 1 2021

\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0=>x^2+y^2\ge2xy\\\left(x+y\right)^2\ge0=>x^2+y^2\ge-2xy\end{matrix}\right.\)

Ta có:

\(\left\{{}\begin{matrix}2\left(x^2+y^2\right)+xy\ge5xy\\2\left(x^2+y^2\right)+xy\ge-3xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\ge5xy\\1\ge-3xy\end{matrix}\right.\)

\(\Leftrightarrow-\dfrac{1}{3}\le xy\le\dfrac{1}{5}\)

Ta có:

P=\(2\left(x^2+y^2\right)^2-4x^2y^2+2+\left(x^2+y^2+2xy\right)\)

P= \(\dfrac{2\left(1-xy\right)^2}{4}-4\left(xy\right)^2+2+\left(\dfrac{1-xy}{2}+2xy\right)\)

=\(\dfrac{\left(xy\right)^2-2xy+1}{2}-4\left(xy\right)^2+2+\dfrac{3xy}{2}+\dfrac{1}{2}\)

Đặt t = xy => \(-\dfrac{1}{3}\le t\le\dfrac{1}{5}\)

Ta có : 

P= \(\dfrac{-7t^2}{2}+\dfrac{t}{2}+3=-\dfrac{7}{2}\left(t-\dfrac{1}{14}\right)^2+\dfrac{169}{56}\)

Ta có: \(-\dfrac{1}{3}-\dfrac{1}{14}\le t-\dfrac{1}{14}\le\dfrac{1}{5}-\dfrac{1}{14}\)

<=>\(-\dfrac{17}{42}\le t-\dfrac{1}{14}\le\dfrac{9}{70}\)

=> 0\(\le\left(t-\dfrac{1}{14}\right)^2\le\left(\dfrac{17}{42}\right)^2\)

\(\dfrac{169}{56}\ge P\ge\dfrac{169}{56}-\dfrac{7}{2}\left(\dfrac{17}{42}\right)^2\)

Max P= \(\dfrac{169}{56}\) => t = 1/14 => \(xy=\dfrac{1}{14}\rightarrow x^2+y^2=\dfrac{13}{14}\) => x,y=...

Min P=\(\dfrac{169}{56}-\dfrac{7}{6}\left(\dfrac{17}{42}\right)^2\) <=> \(t=xy=-\dfrac{1}{3}\)

<=> x=-y=\(\dfrac{1}{\sqrt{3}}\) 

26 tháng 5 2021

undefined

CHÚC BẠN HỌC TỐThaha

26 tháng 5 2021

Thanksundefined

NV
12 tháng 3 2021

\(B=\dfrac{1}{x^3+y^3}+\dfrac{1}{xy\left(x+y\right)}=\dfrac{1}{x^3+y^3}+\dfrac{3}{3xy\left(x+y\right)}\)

\(B\ge\dfrac{\left(1+\sqrt{3}\right)^2}{x^3+y^3+3xy\left(x+y\right)}=\dfrac{4+2\sqrt{3}}{\left(x+y\right)^3}=4+2\sqrt{3}\)

\(B_{min}=4+2\sqrt{3}\) khi \(\left(x;y\right)=\left(\dfrac{3+\sqrt{3}-\sqrt[4]{12}}{6+2\sqrt{3}};\dfrac{3+\sqrt{3}+\sqrt[4]{12}}{6+2\sqrt{3}}\right)\) và hoán vị

 

AH
Akai Haruma
Giáo viên
12 tháng 3 2021

Lời giải:

Áp dụng BĐT Cauchy-Shwarz:

$B=\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{(x+y)^3-3xy(x+y)}+\frac{1}{xy}$

$=\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{3}{3xy}$

$\geq \frac{(1+\sqrt{3})^2}{1-3xy+3xy}=(1+\sqrt{3})^2$

Vậy $B_{\min}=(1+\sqrt{3})^2$

Dấu "=" xảy ra khi $xy=\frac{1}{2}-\frac{1}{2\sqrt{3}}$

NV
28 tháng 3 2021

Bạn kiểm tra lại đề bài, với biểu thức thế này thì không thể tìm được điểm rơi (nó là nghiệm của 1 pt bậc 4 hệ số rất xấu ko thể giải được)

NV
16 tháng 1 2021

\(P\ge\dfrac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}+\dfrac{\sqrt{3\sqrt[3]{y^3z^3}}}{yz}+\dfrac{\sqrt{3\sqrt[3]{z^3x^3}}}{zx}\)

\(P\ge\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\ge\sqrt{3}.3\sqrt[3]{\dfrac{1}{\sqrt{xy.yz.zx}}}=3\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

16 tháng 1 2021

Ta có bất đẳng thức sau \(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\ge0.\)

Do đó:

\(P=\sum\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\sum\dfrac{\sqrt{xyz+xy\left(x+y\right)}}{xy}\)

\(=\sqrt{x+y+z}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\ge\sqrt{3\sqrt[3]{xyz}}\cdot3\sqrt[3]{\dfrac{1}{\sqrt{xy}}\cdot\dfrac{1}{\sqrt{yz}}\cdot\dfrac{1}{\sqrt{zx}}}=3\sqrt{3}\)

Đẳng thức xảy ra khi $x=y=z=1.$

5 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả