Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(x^2-2xy+x-2y\le0.\)
\(\Leftrightarrow\left(x-2y\right)\left(x+1\right)\le0\)(1). Do x;y là các số thực không âm nên x + 1 >0 nên từ (1) => \(0\le x\le2y\)
Với mọi \(0\le x\le2y\)thì \(x^2+3x\le\left(2y\right)^2+3\left(2y\right)=4y^2+6y\)
Do đó, \(M=x^2-5y^2+3x\le4y^2-5y^2+6y=-y^2+6y-9+9=-\left(y-3\right)^2+9\le9\forall y\)
Vậy GTLN của M là: 9 khi y = 3 và x = 2y = 6.
\(x^2-2xy+x-2y\ge0\)
\(\Leftrightarrow x\left(x-2y\right)+x-2y\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2y\right)\ge0\)
\(\Leftrightarrow x\ge2y\)( vì x là số thực không âm nên x+1 >0 )
\(\Leftrightarrow0\le y\le\frac{x}{2}\)
\(\Leftrightarrow y^2\le\frac{x^2}{4}\)( do 2 vế không âm nên bình phương hai vế )
\(\Rightarrow M\le\frac{x^2+3x-5x^2}{4}=\frac{-x^2}{4}+3x=9-\left(3-\frac{x}{2}\right)^2\le9\)
Vậy Mmax=9 <=> x=6, y =3
a)
\(Cosi:\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
b) ta có \(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
Và : \(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow xy\le\frac{x^2+y^2}{2}\)
=>M\(\ge2+\frac{x^2+y^2}{2\left(x^2+y^2\right)}=2+\frac{1}{2}=\frac{5}{2}\)
Min M = 5/2 khi x =y
\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+x\right)^2}{y+z+z+x+x+y}=\frac{x+y+x}{2}=1\)
Dấu ' =' xảy ra khi \(x=y=z=\frac{2}{3}\)
đề sai nhá. thử số là biết