Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ giả thiết: \(x+y\le xy\le\frac{\left(x+y\right)^2}{4}\)(theo BĐT AM-GM)
\(\Leftrightarrow\left(x+y\right)\left(x+y-4\right)\ge0\)mà x,y dương nên \(x+y\ge4\)
ta có:\(16P\le\left(x+y\right)^2\left(\frac{1}{5x^2+7y^2}+\frac{1}{5y^2+7x^2}\right)\)
Áp dụng BĐT cauchy-schwarz theo chiều ngược lại:
\(\frac{\left(x+y\right)^2}{5x^2+7y^2}\le\frac{x^2}{3\left(x^2+y^2\right)}+\frac{y^2}{2\left(x^2+2y^2\right)}\)
\(\frac{\left(x+y\right)^2}{5y^2+7x^2}\le\frac{y^2}{3\left(x^2+y^2\right)}+\frac{x^2}{2\left(y^2+2x^2\right)}\)
\(\Rightarrow\left(x+y\right)^2\left(\frac{1}{5x^2+7y^2}+\frac{1}{5y^2+7x^2}\right)\le\frac{x^2+y^2}{3\left(x^2+y^2\right)}+\frac{x^2}{2\left(y^2+2x^2\right)}+\frac{y^2}{2\left(x^2+2y^2\right)}\)(*)
xét \(\frac{x^2}{y^2+2x^2}+\frac{y^2}{x^2+2y^2}=2-\frac{x^2+y^2}{y^2+2x^2}-\frac{x^2+y^2}{x^2+2y^2}=2-\left(x^2+y^2\right)\left(\frac{1}{y^2+2x^2}+\frac{1}{x^2+2y^2}\right)\)
Áp dụng BĐT cauchy:\(\frac{1}{y^2+2x^2}+\frac{1}{x^2+2y^2}\ge\frac{4}{3\left(x^2+y^2\right)}\)
do đó \(\frac{x^2}{y^2+2x^2}+\frac{y^2}{x^2+2y^2}\le2-\frac{4}{3}=\frac{2}{3}\)
kết hợp với (*):\(16VT\le\frac{1}{3}+\frac{1}{2}.\frac{2}{3}=\frac{2}{3}\)
\(VT\le\frac{1}{24}\)
Dấu = xảy ra khi x=y=2
\(P\le\frac{x}{2\sqrt{x^4.y^2}}+\frac{y}{2\sqrt{x^2.y^4}}=\frac{x}{2x^2y}+\frac{y}{2xy^2}=\frac{1}{2xy}+\frac{1}{2xy}=\frac{1}{xy}=1\)
Dấu "=" xảy ra khi x=y=1
Với x, y thực dương áp dụng BĐT Cauchy ta có:
\(P=\frac{16\sqrt{xy}}{x+y}+\frac{x^2+y^2}{xy}\)
\(=\frac{16\sqrt{xy}}{x+y}+\frac{\left(x+y\right)^2-2xy}{xy}\)
\(=\frac{16\sqrt{xy}}{x+y}+\left(\frac{\left(x+y\right)^2}{xy}+4\right)-6\)
\(\ge\frac{16\sqrt{xy}}{x+y}+2\sqrt{\frac{4\left(x+y\right)^2}{xy}}-6\)
\(=\frac{16\sqrt{xy}}{x+y}+\frac{4\left(x+y\right)}{\sqrt{xy}}-6\)
\(\ge2\sqrt{\frac{16\sqrt{xy}}{x+y}.\frac{4\left(x+y\right)}{xy}}-6=2\sqrt{16.4}-6=10\)
Vậy Pmin = 10 tại x = y.
áp dụng bđt cauchy ->x+y\(\supseteq\)2\(\sqrt{xy}\)
x2+y2\(\supseteq\)2xy
nên P\(\supseteq\)\(\frac{16\sqrt{xy}}{2\sqrt{xy}}\)+\(\frac{2xy}{xy}\)=8+2=10
dấu = xảy ra\(\Leftrightarrow\)x=y
dự đoán của chúa Pain x=y=1
áp dụng BDT cô si ta có
\(A\ge2\sqrt{\frac{\left(x+y+1\right)^2.\left(xy+x+y\right)}{\left(xy+x+y\right)\left(x+y+1\right)^2}}=2.\)
dấu = xảy ra khi
\(\left(x+y+1\right)^2=xy+x+y\) :)
Bài 1: \(T=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
\(=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)
\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)
\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)
\(\Rightarrow T\ge1\)
Bài 2:
[Toán 10] Bất đẳng thức | Page 5 | HOCMAI Forum - Cộng đồng học sinh Việt Nam
a)
\(Cosi:\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
b) ta có \(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
Và : \(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow xy\le\frac{x^2+y^2}{2}\)
=>M\(\ge2+\frac{x^2+y^2}{2\left(x^2+y^2\right)}=2+\frac{1}{2}=\frac{5}{2}\)
Min M = 5/2 khi x =y