K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 6 2019

\(P=2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)\ge\frac{2.4}{x^2+y^2+2xy}=\frac{8}{\left(x+y\right)^2}=8\)

Dấu "=" khi \(x=y=\frac{1}{2}\)

8 tháng 2 2020

Áp dụng bđt AM-GM ta có:

\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\)

\(\Rightarrow\left(x+\frac{1}{x}\right)^2\ge4\)

CMTT \(\left(y+\frac{1}{y}\right)^2\ge4\)

\(\Rightarrow\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge4\left(dpcm\right)\)

Dấu"="xảy ra \(\Leftrightarrow x=y=1\)

24 tháng 11 2019

1) Biến đồi tương đương:

\(\left(x^2+y^2\right)^2\ge8\left(x-y\right)^2\)

\(\Leftrightarrow\left(x^2+y^2\right)^2\ge8xy\left(x-y\right)^2\)

\(\Leftrightarrow\left(x^2-4xy+y^2\right)^2\ge0\)(đúng)

2) Sửa đề: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\left(\text{với }xy\ge1\right)\)

\(\Leftrightarrow\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(x^2+1\right)\left(y^2+1\right)\left(xy+1\right)}\ge0\) (đúng)

24 tháng 11 2019

t ko xét dấu đẳng thức đâu, xấu lắm (ở bài 1), nên you tự xét:D

25 tháng 1 2018

Đặt : A = 1/x^2+xy + 1/y^2+xy

Có : A = 1/x.(x+y) + 1/y.(x+y) = 1/x + 1/y ( vì x+y = 1 )

Áp dụng bđt 1/a + 1/b >= 4/a+b với mọi a,b > 0 cho x,y > 0 thì :

A >= 4/x+y = 4/1 = 4

Dấu "=" xảy ra <=> x=y=1/2

=> ĐPCM

Tk mk nha

31 tháng 1 2015

Áp dụng bđt : Với a>0 ; b>0 thì 1/b + 1/b >=4/(a+b) ta có :

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+xy+y^2+xy}=\frac{4}{\left(x+y\right)^2}\ge4\)( vì 0 = < x + y <=1)

6 tháng 1 2021
Bạn tham khảo nhé!

Bài tập Tất cả

Bài tập Tất cả

NM
6 tháng 1 2021

Xét \(\frac{x}{y^3-1}+\frac{y}{x^3-1}=\frac{1-y}{y^3-1}+\frac{1-x}{x^3-1}=-\frac{1}{x^2+x+1}-\frac{1}{y^2+y+1}\)

\(=-\frac{x^2+y^2+x+y+2}{\left(x^2+x+1\right)\left(y^2+y+1\right)}=-\frac{x^2+y^2+3}{x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+x+y+1}\)

\(=-\frac{\left(x+y\right)^2-2xy+3}{x^2y^2+x^2+y^2+2xy+2}=-\frac{4-2xy}{x^2y^2+3}=\frac{2\left(xy-2\right)}{x^2y^2+3}\)

từ đó ta có đpcm

NV
11 tháng 6 2019

\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{1}{4xy}\)

\(A\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{1}{\left(x+y\right)^2}\)

\(A\ge\frac{4}{1^2}+2+\frac{1}{1^2}=7\)

Dấu "=" khi \(x=y=\frac{1}{2}\)

11 tháng 6 2018

Đặt:  \(A=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\)

Ta có: \(A=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=\frac{xy}{x}+\frac{xy}{y}+\frac{2}{x+y}\left(\text{Do: xy = 1}\right)\)

                                                         \(=x+y+\frac{2}{x+y}\)

                                                         \(=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}\)

Đặt: \(B=\frac{x+y}{2};C=\frac{x+y}{2}+\frac{2}{x+y}\)

\(\Rightarrow A=B+C\)

Vì x, y > 0, áp dụng BĐT Cô-si, ta có:

\(\Rightarrow B=\frac{x+y}{2}\ge\sqrt{xy}=\sqrt{1}=1\) (1)

Ta có: x, y > 0 => x + y > 0

Áp dụng BĐT \(\frac{a}{b}+\frac{b}{a}\ge2\) với hai số dương x + y và 2

\(\Rightarrow C=\frac{x+y}{2}+\frac{2}{x+y}\ge2\) (2)

\(\text{Từ (1); (2) }\Rightarrow B+C=\frac{x+y}{2}+\frac{2}{x+y}\ge1+2\)

                      \(\Rightarrow A\ge3\)

                     \(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\ge3\)

                      => ĐPCM