K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2016

áp dụng bất đẳng thức cô si cho 2 số dương x, y ta được:

\(x+y\ge2\sqrt{xy}\)

\(\Leftrightarrow\left(\frac{x+y}{2}\right)^2\ge xy\)

\(\Leftrightarrow\left(\frac{2}{2}\right)^2\ge xy\Leftrightarrow1\ge xy\)

ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=4-2xy\le4-2\)

\(\Leftrightarrow x^2+y^2\le2\)  (1)

áp dụng bất đẳng thức cô si với 2 số dương x2,y2 ta được:

\(x^2+y^2\ge2\sqrt{x^2y^2}\)

\(\Leftrightarrow\left(\frac{x^2+y^2}{2}\right)^2\ge x^2y^2\)

mà \(\left(\frac{x^2+y^2}{2}\right)^2\le\left(\frac{2}{2}\right)^2=1\)

nên: \(x^2y^2\le1\)  (2)

nhân 1 và 2 vế theo vế ta được:

\(x^2y^2\left(x^2+y^2\right)\le2\)

dấu "='' xảy ra khi và chỉ khi x=y=1

 

4 tháng 6 2016

ngại nhất là bất đẳng thức mà.

4 tháng 6 2016

\(x+y=2\Rightarrow0< xy\le1\)

\(P=\left(xy\right)^2\left(4-2xy\right)=a^2\left(4-2a\right)\)

\(P-2=a\left(4a-2a^2\right)-2=2\left(a-1\right)\left(-a^2-a+1\right)\)\(\le0\)  vì  a\(\le\)1

=> dpcm

19 tháng 6 2015

Đặt B\(=\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{\left(y^2-x^2\right)}\)

      \(B=\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left[\left(x-y\right)\left(x+y\right)\right]^2}-\frac{x^2}{\left(x-y\right)\left(x+y\right)}\)  (làm tắt đấy x^2/(y^2 - x^2) = - x^2 /(x^2 - y^2)

Thay x + y = 1 vào B ta có 

    \(B=\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x-y\right)^2}-\frac{x^2}{x-y}\)

  \(B=\frac{y^2-2x^2y-x^2\left(x-y\right)}{\left(x-y\right)^2}=\frac{y^2-x^2y-x^3}{\left(x-y\right)^2}\)

A = \(\frac{y-x}{xy}:B=\frac{y-x}{xy}\cdot\frac{\left(x-y\right)^2}{\left(y^2-x^2y-x^3\right)}=\frac{\left(x-y\right)^3}{-xy\left(y^2-x^2y-x^3\right)}\)

Sorry mình không giúp đc bạn

23 tháng 2 2020

a) Rút gọn :

Ta có : \(A=\frac{y-x}{xy}:\left[\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{y^2-x^2}\right]\)

\(=\frac{y-x}{xy}:\left[\frac{y^2\left(x+y\right)^2-2x^2y-x^2\left(x^2-y^2\right)}{\left(x^2-y^2\right)^2}\right]\)

\(=\frac{y-x}{xy}:\left[\frac{y^2\left(x^2+2xy+y^2\right)-2x^2y-x^4+x^2y^2}{\left(x^2-y^2\right)^2}\right]\)

...

23 tháng 2 2020

 ミ★ Đạt ★彡: sao bạn rút gọn gì vậy @@?

16 tháng 1 2019

1. \(a< b\Leftrightarrow2a< 2b\Leftrightarrow2a+1< 2b+1\)

\(a< b\Leftrightarrow-3a>-3b\Leftrightarrow-3a>-3b-1\)

2.\(a>b>0\Leftrightarrow a.\frac{1}{ab}>b.\frac{1}{ab}\Leftrightarrow\frac{1}{b}>\frac{1}{a}\Leftrightarrow\frac{1}{a}< \frac{1}{b}\)

AH
Akai Haruma
Giáo viên
6 tháng 11 2017

Lời giải:

Áp dụng BĐT Cô-si với \(x; \frac{1}{x}\) là hai số dương:

\(x+\frac{1}{x}\geq 2\sqrt{x.\frac{1}{x}}=2\)

\(\Rightarrow \left(x+\frac{1}{x}\right)^2\geq 4\)

Tương tự, \(\left(y+\frac{1}{y}\right)^2\geq 4\)

\(\Rightarrow \left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\geq 8\) (đpcm)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x=\frac{1}{x}\\ y=\frac{1}{y}\end{matrix}\right.\Leftrightarrow x=y=1\)

P.s: Có thể thấy điều kiện $x+y=2$ là dư thừa.

5 tháng 1 2019

Hem thừa .-.

\(\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\ge\dfrac{\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)^2}{2}\ge\dfrac{\left(x+y+\dfrac{4}{x+y}\right)^2}{2}=8\)

13 tháng 8 2018

Áp dụng BĐT cauchy schawrz dạng engel ta có:

\(\frac{\left(y+z\right)^2}{x}+\frac{\left(x+z\right)^2}{y}+\frac{\left(x+y\right)^2}{z}\ge\frac{\left(y+z+x+z+x+y\right)^2}{x+y+z}=\frac{4\left(x+y+z\right)^2}{x+y+z}=4\left(x+y+z\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

3 tháng 9 2018

Áp dụng BĐT cauchy schawrz dạng engel, ta có:

\(\frac{\left(y+z\right)^2}{x}+\frac{\left(x+z\right)^2}{y}+\frac{\left(x+y\right)^2}{z}\ge\frac{\left(y+z+x+z+x+y\right)^2}{x+y+z}=\frac{4\left(x+y+z\right)^2}{x+y+z}=4\left(x+y+z\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

30 tháng 8 2017

Biến đổi tương đương :

\(2\left(x^5+y^5\right)\ge\left(x^2+y^2\right)\left(x^3+y^3\right)\)

\(\Leftrightarrow2x^5+2y^5\ge x^5+x^2y^3+y^2x^3+y^5\)

\(\Leftrightarrow2x^5+2y^5-x^5-x^2y^3-y^2x^3-y^5\ge0\)

\(\Leftrightarrow x^5+y^5-x^2y^2\left(x+y\right)\ge0\)

\(\Leftrightarrow\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-x^2y^2\left(x+y\right)\ge0\)

\(\Leftrightarrow\left(x+y\right)\left(x^4-x^3y-xy^3+y^4\right)\ge0\)

\(\Leftrightarrow x^4-x^3y-xy^3+y^4\ge0\)(do x;y > 0)

\(\Leftrightarrow x^4-2x^3y+x^2y^2+x^3y-2x^2y^2+xy^3+y^4-2xy^3+x^2y^2\ge0\)

\(\Leftrightarrow x^2\left(x^2-2xy+y^2\right)+xy\left(x^2-2xy+y^2\right)+y^2\left(x^2-2xy+y^2\right)\ge0\)

\(\Leftrightarrow\left(x^2+xy+y^2\right)\left(x^2-2xy+y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\) (luôn đúng \(\forall x;y>0\))

Vậy bđt đã đc chứng minh