K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2015

A=x2+y2=x2+2xy+y2-2xy

=(x+y)2-2xy

=32-2.(-2)

=9+4

=13

 

B= x^3 + y^3

=x3+3x2y+3xy2+y3-3x2y-3xy2

=(x+y)3-3xy.(x+y)

=33-3.(-2).3

=27+18

=45

 

C= x^4 +y^4

=x4+2x2y2+y4-2x2y2

=(x2+y2)2-2.(xy)2

=132-2.(-2)2

=169-8

=161

 

D= x^6+ y^6

 =x6+2x3y3+y6-2x3y3

=(x3+y3)2-2.(xy)3

=452-2.(-2)3

=2041

18 tháng 8 2020

Gọi x,y là nghiệm của phương trình:

\(\left\{{}\begin{matrix}S=x+y=3\\P=x.y=2\end{matrix}\right.\Rightarrow a^2-S.a+P=0\)

\(\Leftrightarrow a^2-3a+2=0\Leftrightarrow\left[{}\begin{matrix}a_1=x=2\\a_2=y=1\end{matrix}\right.\)

a)\(x^2+y^2=1^2+2^2=5\)

b)\(x^3+y^3=1^3+2^3=9\)

c)\(x^4+y^4=1^4+2^4=17\)

d)\(x^5+y^5=1^5+2^5=33\)

e)\(x^6+y^6=1^6+2^6=65\)

16 tháng 8 2020

CÓ:     \(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2.2=5\)

CÓ:     \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3\left(5-2\right)=3.3=9\)

CÓ:     \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=5^2-2.2^2=25-8=17\)

CÓ:     \(x^5+y^5=\left(x^4+y^4\right)\left(x+y\right)-x^4y-xy^4=3.17-xy\left(x^3+y^3\right)\)

\(=51-2.9=51-18=33\)

CÓ:     \(x^6+y^6=\left(x+y\right)\left(x^5+y^5\right)-xy^5-x^5y\)

\(=3.33-xy\left(x^4+y^4\right)=3.33-2.17\)

\(=99-34=65\)

16 tháng 8 2020

\(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2.2=9-4=5\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3.2.3=27-18=9\)

\(x^4+y^4=\left(x+y\right)^4-4xy\left(x^2+y^2\right)-3xy.2xy\)

\(=3^4-4.2.5-3.2.2.2=81-40-24=17\)

11 tháng 7 2019

\(\left(x+y\right)^2-2xy=x^2+y^2=4^2-2.1=14\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=14^2-2=196-2=194\)

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=4\left(14-1\right)=52\)

\(\left(x^4+y^4\right)\left(x+y\right)=194.4=776\Leftrightarrow x^5+y^5+x^4y+y^4x=\left(x^5+y^5\right)+xy\left(x^3+y^3\right)=\left(x^5+y^5\right)+1.52=\left(x^5+y^5\right)+52=776\Rightarrow x^5+y^5=724\)

11 tháng 7 2019

\(\left\{{}\begin{matrix}x+y=4\\xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+y^2=16\\4xy=4\end{matrix}\right.\Rightarrow x^2+2xy-4xy+y^2=\left(x-y\right)^2=12mà:x>y\Leftrightarrow x-y>0\Rightarrow x-y=\sqrt{12}=2\sqrt{3};x+y=2.2\Rightarrow\left\{{}\begin{matrix}x=\sqrt{3}+2\\y=2-\sqrt{3}\end{matrix}\right.\)

\(x^2-y^2=\left(x-y\right)\left(x+y\right)=4.2\sqrt{3}=8\sqrt{3}\)

\(\left(x^2+y^2\right)\left(x^2-y^2\right)=8\sqrt{3}.14=112\sqrt{3}\Rightarrow x^4-y^4=112\sqrt{3}\)

\(\left(x^3-y^3\right)=\left(x-y\right)\left(x^2+xy+y^2\right);x^6-y^6=\left(x^3+y^3\right)\left(x^3-y^3\right)tựlm\)

21 tháng 8 2020

A = (x - y)2 = (x + y)2 - 4xy

= 42 - 4.3 = 4

B = x2 + y2 = (x + y)2 - 2xy

= 42 - 2.3 = 10

C = x4 + y4 = (x2 + y2)2 - 2x2y2

= 102 - 2.32 = 82

D = x3 + y3 = (x + y)3 - 3xy(x + y)

= 43 - 3.3.4 = 40

E = x6 + y6 = (x2 + y2)3 - 3x2y2(x2 + y2)

= 103 - 3.32.10 = 730

Bài 1:

a: =>x^3-x-6x-6=0

=>x(x-1)(x+1)-6(x+1)=0

=>(x+1)(x-3)(x+2)=0

hay \(x\in\left\{-1;3;-2\right\}\)

b: \(\Leftrightarrow x^2-6x+9+y^2+6y+9=0\)

=>(x-3)^2+(y+3)^2=0

=>x=3 và y=-3

27 tháng 9 2015

bai de wa sao phai lam cho met

15 tháng 12 2018

\(x^3-7x-6=0\)

\(x^3-3x^2+3x^2+2x-9x-6=0\)

\(x^2.\left(x-3\right)+3x.\left(x-3\right)+2.\left(x-3\right)=0\)

\(\left(x+3\right).\left(x^2+3x+2\right)=0\Rightarrow\left(x-3\right).\left(x^2+3x+x+2\right)=0\)

\(\Rightarrow\left(x-3\right).\left(x+1\right).\left(x+2\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\text{hoặc }x=-2\)

15 tháng 7 2018

Bài 6: 

a2+b2=(a+b)2-2ab

<=> 2010  =36-2ab   

<=>ab=-987

M=a3+b3

=(a+b)(a2-ab+b2)

=6(a2+987+b^2)

=6(2010+987)

=17982