K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2020

Gọi x,y là nghiệm của phương trình:

\(\left\{{}\begin{matrix}S=x+y=3\\P=x.y=2\end{matrix}\right.\Rightarrow a^2-S.a+P=0\)

\(\Leftrightarrow a^2-3a+2=0\Leftrightarrow\left[{}\begin{matrix}a_1=x=2\\a_2=y=1\end{matrix}\right.\)

a)\(x^2+y^2=1^2+2^2=5\)

b)\(x^3+y^3=1^3+2^3=9\)

c)\(x^4+y^4=1^4+2^4=17\)

d)\(x^5+y^5=1^5+2^5=33\)

e)\(x^6+y^6=1^6+2^6=65\)

16 tháng 8 2020

CÓ:     \(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2.2=5\)

CÓ:     \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3\left(5-2\right)=3.3=9\)

CÓ:     \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=5^2-2.2^2=25-8=17\)

CÓ:     \(x^5+y^5=\left(x^4+y^4\right)\left(x+y\right)-x^4y-xy^4=3.17-xy\left(x^3+y^3\right)\)

\(=51-2.9=51-18=33\)

CÓ:     \(x^6+y^6=\left(x+y\right)\left(x^5+y^5\right)-xy^5-x^5y\)

\(=3.33-xy\left(x^4+y^4\right)=3.33-2.17\)

\(=99-34=65\)

16 tháng 8 2020

\(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2.2=9-4=5\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3.2.3=27-18=9\)

\(x^4+y^4=\left(x+y\right)^4-4xy\left(x^2+y^2\right)-3xy.2xy\)

\(=3^4-4.2.5-3.2.2.2=81-40-24=17\)

11 tháng 7 2019

\(\left(x+y\right)^2-2xy=x^2+y^2=4^2-2.1=14\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=14^2-2=196-2=194\)

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=4\left(14-1\right)=52\)

\(\left(x^4+y^4\right)\left(x+y\right)=194.4=776\Leftrightarrow x^5+y^5+x^4y+y^4x=\left(x^5+y^5\right)+xy\left(x^3+y^3\right)=\left(x^5+y^5\right)+1.52=\left(x^5+y^5\right)+52=776\Rightarrow x^5+y^5=724\)

11 tháng 7 2019

\(\left\{{}\begin{matrix}x+y=4\\xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+y^2=16\\4xy=4\end{matrix}\right.\Rightarrow x^2+2xy-4xy+y^2=\left(x-y\right)^2=12mà:x>y\Leftrightarrow x-y>0\Rightarrow x-y=\sqrt{12}=2\sqrt{3};x+y=2.2\Rightarrow\left\{{}\begin{matrix}x=\sqrt{3}+2\\y=2-\sqrt{3}\end{matrix}\right.\)

\(x^2-y^2=\left(x-y\right)\left(x+y\right)=4.2\sqrt{3}=8\sqrt{3}\)

\(\left(x^2+y^2\right)\left(x^2-y^2\right)=8\sqrt{3}.14=112\sqrt{3}\Rightarrow x^4-y^4=112\sqrt{3}\)

\(\left(x^3-y^3\right)=\left(x-y\right)\left(x^2+xy+y^2\right);x^6-y^6=\left(x^3+y^3\right)\left(x^3-y^3\right)tựlm\)

27 tháng 6 2021

Ta có: 

\(x^2+y^2=\left(x+y\right)^2-2xy=a^2-2b\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)

\(=a^4-4a^2b+4b^2-2b^2=a^4-4a^2b+2b^2\)

\(x^5+y^5=\left(x+y\right)^5-\left(5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)\)

\(=\left(x+y\right)^5-5xy\left(x^3+y^3\right)-10x^2y^2\left(x+y\right)\)

\(=a^5-5\left(a^3-3ab\right)b-10ab^2\)

\(=a^5-5a^3b+15ab^2-10ab^2\)

\(=a^5-5a^3b+5ab^2\)

DD
27 tháng 6 2021

\(x^2+y^2=\left(x+y\right)^2-2xy=a^2-2b\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)

\(=a^2-4a^2b+2b^2\)

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)=\left(a^2-2b\right)\left(a^3-3ab\right)-ab^2\)

15 tháng 7 2015

A=x2+y2=x2+2xy+y2-2xy

=(x+y)2-2xy

=32-2.(-2)

=9+4

=13

 

B= x^3 + y^3

=x3+3x2y+3xy2+y3-3x2y-3xy2

=(x+y)3-3xy.(x+y)

=33-3.(-2).3

=27+18

=45

 

C= x^4 +y^4

=x4+2x2y2+y4-2x2y2

=(x2+y2)2-2.(xy)2

=132-2.(-2)2

=169-8

=161

 

D= x^6+ y^6

 =x6+2x3y3+y6-2x3y3

=(x3+y3)2-2.(xy)3

=452-2.(-2)3

=2041

27 tháng 8 2018

= ( x3 + 3x2y + 3xy2 + y3 ) - 6xy - 3x2 - 3y2 + 3x + 3y + 2012

= ( x + y )3 - 3xy - 3x2 - 3xy - y2 + 3. ( x + y ) + 2012

= ( x + y )3 - 3x ( x + y ) - 3y .( x + y ) + 3.( x + y ) + 2012

= ( x + y )3 - 3.( x + y ) ( x + y ) + 3( x + y ) + 2012

= 1013 - 3.1012 + 3.101 + 2012

= 1002013

27 tháng 9 2015

bai de wa sao phai lam cho met

21 tháng 7 2016

Hằng đẳng thức bậc cao sử dụng nhị thức newton

\(B=x^3-y^3+\left(x-y\right)^2\)

\(=\left(x-y\right)^3+3xy\left(x-y\right)+\left(x-y\right)^2\)

\(=4^3+3\cdot5\cdot4+4^2\)

\(=64+16+60\)

=140

31 tháng 8 2021

\(B=x^3-y^3+\left(x-y\right)^2=\left(x-y\right)\left(x^2+xy+y^2\right)+\left(x-y\right)^2=\left(x-y\right)\left(x^2+xy+y^2+x-y\right)=\left(x-y\right)\left[\left(x-y\right)^2+\left(x-y\right)+3xy\right]=4\left(4^2+4+3.5\right)=140\)