K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2016

Do x\(^3\)+y\(^3\)+z\(^3\)=3xyz\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+y+z=0\\x=y=z\end{array}\right.\)

TH1:x+y+z=0\(\Rightarrow P=\frac{xyz}{\left(-z\right)\left(-y\right)\left(-x\right)}=-1\)

TH2:x=y=z\(\Rightarrow P=\frac{xyz}{8xyz}=\frac{1}{8}\)

16 tháng 8 2017

Giải bài này hơi dài, t ngại làm lắm :v you vào ib t chỉ cho =))

16 tháng 8 2017

ok!

8 tháng 3 2019

\(VT=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(=2+\frac{z}{x}+\frac{y}{x}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}\)

Bài toán trở thành \(\frac{z}{x}+\frac{y}{x}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}\ge\frac{x+y+z}{3\sqrt{xyz}}\)

Áp dụng bất đẳng thức AM-GM:

\(\frac{z}{x}+\frac{z}{y}+\frac{z}{z}\ge3\sqrt[3]{\frac{z^3}{xyz}}=\frac{3z}{\sqrt[3]{xyz}}\)

Tương tự:

\(\frac{y}{x}+\frac{y}{z}+\frac{y}{y}\ge\frac{3y}{\sqrt[3]{xyz}}\)

\(\frac{x}{z}+\frac{x}{y}+\frac{x}{x}\ge\frac{3x}{\sqrt[3]{xyz}}\)

\(\Leftrightarrow VT+3\ge3+\frac{3}{\sqrt[3]{xyz}}\left(x+y+z\right)\)

\(\Leftrightarrow VT\ge\frac{3\left(x+y+z\right)}{\sqrt[3]{xyz}}\)\(\ge\frac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)

Is it true?

19 tháng 7 2024

ta có:x+y+z=0⇒x+y=-z⇔(x+y)2=z2⇔x2+2xy+y2-z2=0

⇒x2+y2-z2=-2xy(1)

CMTT:⇒y2+z2-x2=-2yz(2) và z2+x2-y2=-2xz(3)

Thay (1)(2)(3) vào B,ta có.B=-(2xy.2yz.2xz)/16xyz=-xyz/2

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

Sử dụng bổ đề: Với \(a,b>0\Rightarrow a^3+b^3\geq ab(a+b)\)

BĐT đúng vì nó tương đương với \((a-b)^2(a+b)\geq 0\) (luôn đúng)

Áp dụng vào bài toán:

\(P\leq \frac{1}{x^3yz(y+z)+1}+\frac{1}{y^3xz(x+z)+1}+\frac{1}{z^3xy(x+y)+1}\)

\(\Leftrightarrow P\leq \frac{1}{x^2(y+z)+xyz}+\frac{1}{y^2(x+z)+xyz}+\frac{1}{z^2(x+y)+xyz}\)

\(\Leftrightarrow P\leq \frac{1}{x(xy+yz+xz)}+\frac{1}{y(xy+yz+xz)}+\frac{1}{z(xy+yz+xz)}=\frac{xy+yz+xz}{xy+yz+xz}=1\)

Vậy \(P_{\max}=1\Leftrightarrow x=y=z=1\)