K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

a) Xét \(x^2-4=\left(\sqrt{\frac{a}{b}}\right)^2+\left(\sqrt{\frac{b}{a}}\right)^2+2-4\)

\(=\left(\sqrt{\frac{a}{b}}\right)^2+\left(\sqrt{\frac{b}{a}}\right)^2-2=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\ge0\)

b) \(\sqrt{x^2-4}=\sqrt{\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2}=\left|\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right|\)

  • Nếu a < b < 0 thì \(\sqrt{\frac{a}{b}}< \sqrt{\frac{b}{a}}\Rightarrow\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}< 0\Rightarrow\sqrt{x^2-4}=\sqrt{\frac{b}{a}}-\sqrt{\frac{a}{b}}\)
  • Nếu b < a < 0 thì \(\sqrt{\frac{b}{a}}< \sqrt{\frac{a}{b}}\Rightarrow\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}>0\Rightarrow\sqrt{x^2-4}=\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\)
11 tháng 8 2016

a) Vì a<0 , b<0 => \(\frac{a}{b}>0;\frac{b}{a}>0\Rightarrow\sqrt{\frac{a}{b}}>0;\sqrt{\frac{b}{a}}>0\)

Áp dụng bất đẳng thức cô si ta có:

 \(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\ge2\sqrt{\sqrt{\frac{a}{b}}\cdot\sqrt{\frac{b}{a}}}=2\)

=> \(\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\right)^2\ge4\)

Hay \(x^2\ge4\)

19 tháng 7 2019

undefinedundefinedcau c í mk thấy bn chép sai đề nên mk sửa lại đề rồi bạn xem lại đề rồi so với bài làm của mk nha có j ko hiểu thì ib mk nha

19 tháng 7 2019

\(a)VT = \dfrac{{{{\left( {\sqrt a + 1} \right)}^2} - 4\sqrt a }}{{\sqrt a - 1}} + \dfrac{{a + \sqrt a }}{{\sqrt a }}\\ = \dfrac{{a + 2\sqrt a + 1 - 4\sqrt a }}{{\sqrt a - 1}} + \dfrac{{\sqrt a \left( {\sqrt a + 1} \right)}}{{\sqrt a }}\\ = \dfrac{{a - 2\sqrt a + 1}}{{\left( {\sqrt a - 1} \right)}} + \sqrt a + 1\\ = \dfrac{{{{\left( {\sqrt a - 1} \right)}^2}}}{{\sqrt a - 1}} + \sqrt a + 1\\ = \sqrt a - 1 + \sqrt a + 1\\ = 2\sqrt a = VP (đpcm) \)

\(b)VT = \dfrac{{x\sqrt x + y\sqrt y }}{{\sqrt x + \sqrt y }} - {\left( {\sqrt x - \sqrt y } \right)^2}\\ = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\left( {x - \sqrt {xy} + y} \right)}}{{\sqrt x + \sqrt y }} - \left( {x - 2\sqrt {xy} + y} \right)\\ = x - \sqrt {xy} + y - x + 2\sqrt {xy} - y\\ = \sqrt {xy} (đpcm)\\ c)VT = \dfrac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}:\dfrac{{a - b}}{{\sqrt a + \sqrt b }}\\ = \dfrac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt {ab} }}.\dfrac{{\sqrt a + \sqrt b }}{{a - b}}\\ = \sqrt a - \sqrt b .\dfrac{{\sqrt a + \sqrt b }}{{a - b}}\\ = \dfrac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{a - b}}\\ = \dfrac{{a - b}}{{a - b}} = 1 (đpcm)\\ d)VT = \left[ {\dfrac{{{{\left( {\sqrt a - \sqrt b } \right)}^2} + 4\sqrt {ab} }}{{\sqrt a + \sqrt b }} - \dfrac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}} \right]:\sqrt b \\ = \dfrac{{a - 2\sqrt {ab} + b + 4\sqrt {ab} }}{{\sqrt a + \sqrt b }} - \dfrac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt {ab} }}:\sqrt b \\ = \dfrac{{{{\left( {\sqrt a + \sqrt b } \right)}^2}}}{{\sqrt a + \sqrt b }} - \left( {\sqrt a - \sqrt b } \right):\sqrt b \\ = \sqrt a + \sqrt b - \sqrt a + \sqrt b :\sqrt b \\ = \dfrac{{2\sqrt b }}{{\sqrt b }} = 2 (đpcm) \)

Câu c đề sai (đã sửa)

8 tháng 7 2019

\(ĐKXĐ:x\ge0\)

Đề sai??? 

Sửa lại

\(a,P=\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}-1}{x-\sqrt{x}+1}\)

\(=\frac{x+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\frac{x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\frac{x+2-x+\sqrt{x}-1+x-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)

29 tháng 3 2020

a)  \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(P=\left(\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}-\frac{1}{\sqrt{x}-1}\right):\left(1+\frac{\sqrt{x}}{x+1}\right)\)

\(\Leftrightarrow P=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\frac{1}{\sqrt{x}-1}\right):\left(\frac{x+\sqrt{x}+1}{x+1}\right)\)

\(\Leftrightarrow P=\frac{2\sqrt{x}-x-1}{\left(\sqrt{x}-1\right)\left(x+1\right)}\cdot\frac{x+1}{x+\sqrt{x}+1}\)

\(\Leftrightarrow P=\frac{-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\frac{-\sqrt{x}+1}{x+\sqrt{x}+1}\)

b) Ta có : \(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Để \(P\le0\Leftrightarrow-\sqrt{x}+1\le0\)

\(\Leftrightarrow-\sqrt{x}\le-1\)

\(\Leftrightarrow\sqrt{x}\ge1\)

\(\Leftrightarrow x\ge1\)

Vì đkxđ : \(x\ne1\)

Vậy để \(P\le0\Leftrightarrow x>1\)

13 tháng 5 2018

a) Với x = 25 thì \(N=\frac{\sqrt{25}+1}{\sqrt{25}}=\frac{6}{5}\)

b) Ta có   \(M=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}\)

\(M=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\)

Suy ra \(S=M.N=\frac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)