Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\frac{1+\text{ax}}{1-\text{ax}}\sqrt{\frac{1-bx}{1+bx}}\)
Ta có: \(x=\frac{1}{a}\sqrt{\frac{2a-b}{b}}\Rightarrow\text{ax}=\sqrt{\frac{2a-b}{b}}\Rightarrow1+\text{ax}=1+\sqrt{\frac{2a-b}{b}}=\frac{\sqrt{b}+\sqrt{2a-b}}{\sqrt{b}}\)
\(1-\text{ax}=\frac{\sqrt{b}-\sqrt{2a-b}}{\sqrt{b}}\)
\(\Rightarrow\frac{1+\text{ax}}{1-\text{ax}}=\frac{\sqrt{b}+\sqrt{2a-b}}{\sqrt{b}-\sqrt{2a-b}}=\frac{\left(\sqrt{b}+\sqrt{2a-b}\right)^2}{2b-2a}\left(1\right)\)
\(bx=\frac{b}{a}\sqrt{\frac{2a-b}{b}}=\frac{\sqrt{b}\left(2a-b\right)}{a}\Rightarrow\hept{\begin{cases}1-bx=\frac{a-\sqrt{b\left(2a-b\right)}}{a}\\1+bx=\frac{a+\sqrt{b\left(2a-b\right)}}{a}\end{cases}}\)
\(\Rightarrow\frac{1-bx}{1+bx}=\frac{a-\sqrt{b\left(2a-b\right)}}{a+\sqrt{b\left(2a-b\right)}}=\frac{\left(a-\sqrt{b\left(2a-b\right)}\right)^2}{a^2-2ab+b^2}=\frac{\left(a-\sqrt{b\left(2a-b\right)}\right)^2}{\left(a-b\right)^2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow Q=\frac{\left(\sqrt{b}+\sqrt{2a-b}\right)^2}{2\left(b-a\right)}.\frac{a-\sqrt{b\left(2a-b\right)}}{a-b}=\frac{\text{[}2a+2\sqrt{b\left(2a-b\right)}\text{]}\left(a-b\sqrt{2a-b}\right)}{2\left(a-b\right)^2}\)
\(\Rightarrow\frac{2\left[a^2-b\left(2a-b\right)\right]}{2\left(a-b\right)^2}=\frac{2\left(a^2-2ab+b^2\right)}{a\left(a-b\right)^2}=1\)
Lời giải:
\(x=\frac{1}{a}\sqrt{\frac{2a-b}{b}}\Rightarrow ax=\sqrt{\frac{2a-b}{b}}\)
\(\Rightarrow 1+ax=\frac{\sqrt{2a-b}+\sqrt{b}}{\sqrt{b}}; 1-ax=\frac{\sqrt{b}-\sqrt{2a-b}}{\sqrt{b}}\)
\(\Rightarrow \frac{1-ax}{1+ax}=\frac{\sqrt{b}-\sqrt{2a-b}}{\sqrt{b}+\sqrt{2a-b}}=\frac{(\sqrt{b}-\sqrt{2a-b})^2}{2(b-a)}\)
Lại có:
\(\frac{1+bx}{1-bx}=\frac{a+\sqrt{2ab-b^2}}{a-\sqrt{2ab-b^2}}=\frac{a^2-(2ab-b^2)}{(a-\sqrt{2ab-b^2})^2}=\frac{(a-b)^2}{(a-\sqrt{2ab-b^2})^2}\)
\(\Rightarrow \sqrt{\frac{1+bx}{1-bx}}=\frac{b-a}{a-\sqrt{2ab-b^2}}\)
Do đó:
$A=\frac{(\sqrt{b}-\sqrt{2a-b})^2}{2a-2\sqrt{2ab-b^2}}=\frac{2a-2\sqrt{2ab-b^2}}{2a-2\sqrt{2ab-b^2}}=1$
a) Xét \(x^2-4=\left(\sqrt{\frac{a}{b}}\right)^2+\left(\sqrt{\frac{b}{a}}\right)^2+2-4\)
\(=\left(\sqrt{\frac{a}{b}}\right)^2+\left(\sqrt{\frac{b}{a}}\right)^2-2=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\ge0\)
b) \(\sqrt{x^2-4}=\sqrt{\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2}=\left|\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right|\)
- Nếu a < b < 0 thì \(\sqrt{\frac{a}{b}}< \sqrt{\frac{b}{a}}\Rightarrow\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}< 0\Rightarrow\sqrt{x^2-4}=\sqrt{\frac{b}{a}}-\sqrt{\frac{a}{b}}\)
- Nếu b < a < 0 thì \(\sqrt{\frac{b}{a}}< \sqrt{\frac{a}{b}}\Rightarrow\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}>0\Rightarrow\sqrt{x^2-4}=\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\)
a) Vì a<0 , b<0 => \(\frac{a}{b}>0;\frac{b}{a}>0\Rightarrow\sqrt{\frac{a}{b}}>0;\sqrt{\frac{b}{a}}>0\)
Áp dụng bất đẳng thức cô si ta có:
\(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\ge2\sqrt{\sqrt{\frac{a}{b}}\cdot\sqrt{\frac{b}{a}}}=2\)
=> \(\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\right)^2\ge4\)
Hay \(x^2\ge4\)
a) Với x = 25 thì \(N=\frac{\sqrt{25}+1}{\sqrt{25}}=\frac{6}{5}\)
b) Ta có \(M=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}\)
\(M=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\)
Suy ra \(S=M.N=\frac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
a) ĐKXĐ: \(x\ge0;x\ne1\)
P=\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2.\left(\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
=\(\left(\frac{a-1}{2\sqrt{a}}\right)^2.\left(\frac{-1-3\sqrt{a}}{a-1}\right)\)
=\(\frac{\left(a-1\right)^2}{4a}.\frac{-1-3\sqrt{a}}{a-1}\)
=\(\frac{\left(a-1\right)\left(-1-3\sqrt{a}\right)}{4a}\)