\(\ge\)6

Tìm giá trị lớn nhất của biểu thức:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2021

`<=>2P=10x+6y+24/x+32/y`
`<=>2P=6x+24/x+2y+32/y+4x+4y`
`<=>2P=6(x+4/x)+2(y+16/y)+4(x+y)`
Áp dụng BĐT cosi:
`x+4/x>=4=>6(x+4/x)>=24`
`y+16/y>=8=>2(y+16/y)>=16`
Mà `x+y>=6=>4(x+y)>=24`
`=>2P>=24+16+24=64`
`=>P>=32`
Dấu "=" `<=>x=2,y=4`

30 tháng 12 2017

*_*

22 tháng 12 2018

P=\(5x+3y+\dfrac{12}{x}+\dfrac{16}{y}\)
=\(3x+\dfrac{12}{x}+y+\dfrac{16}{y}+2\left(x+y\right)\)

AD BĐT cô si :
Ta có \(3x+\dfrac{12}{x}\ge2\sqrt{3x.\dfrac{12}{x}}=2\sqrt{36}=12\)
\(y+\dfrac{16}{y}\ge2\sqrt{y.\dfrac{16}{y}}=2\sqrt{16}=8\)
\(2\left(x+y\right)\ge2.6=12\)
=> P\(\ge12+8+12=32\)
Dấu = xra \(\left\{{}\begin{matrix}3x=\dfrac{12}{x}\\y=\dfrac{16}{y}\\x+y=6\end{matrix}\right.\)\(\Leftrightarrow\left(x;y\right)=\left(2;4\right)\)
Vậy GTNN của P=32 khi (x;y)=(2;4)

NV
11 tháng 12 2018

\(P=3x+\dfrac{12}{x}+y+\dfrac{16}{y}+2\left(x+y\right)\ge2\sqrt{3x.\dfrac{12}{x}}+2\sqrt{y.\dfrac{16}{y}}+2.6=32\)

\(\Rightarrow P_{min}=32\) khi \(\left\{{}\begin{matrix}3x=\dfrac{12}{x}\\y=\dfrac{16}{y}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

10 tháng 10 2018

\(A=5x+3y+\frac{12}{x}+\frac{16}{y}=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\)

Áp dụng BĐT AM-GM cho 2 số không âm:

\(A=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\ge2\sqrt{\frac{36x}{x}}+2\sqrt{\frac{16y}{y}}+2\left(x+y\right)\)

\(=12+8+2\left(x+y\right)\ge32\) (Do \(x+y\ge6\))

Vậy Min A = 32. Dấu "=" xảy ra <=> x=2; y=4.

17 tháng 2 2018

Áp dụng bất đẳng thức AM - GM:

\(P=4x+3y+\dfrac{6}{x}+\dfrac{9}{2y}\)

\(=\left(\dfrac{3}{2}x+\dfrac{6}{x}\right)+\left(\dfrac{1}{2}y+\dfrac{9}{2y}\right)+\left(\dfrac{5}{2}x+\dfrac{5}{2}y\right)\)

\(\ge2\sqrt{\dfrac{3}{2}x\times\dfrac{6}{x}}+2\sqrt{\dfrac{1}{2}y\times\dfrac{9}{2y}}+\dfrac{5}{2}\times5\)

\(=\dfrac{43}{2}\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{3}{2}x=\dfrac{6}{x}\\\dfrac{1}{2}y=\dfrac{9}{2y}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\left(\text{nhận}\right)\)

Vậy \(Min_P=\dfrac{43}{2}\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

20 tháng 7 2016

Áp dụng bất đẳng thức  \(AM-GM\)  đối với từng bộ số trong  \(D\)  ta có:

\(D=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\ge2\sqrt{3x.\frac{12}{x}}+2\sqrt{y.\frac{16}{y}}+2.6=32\)

Dấu  \("="\)  xảy ra  khi và chỉ khi  \(\hept{\begin{cases}x+y=6\\3x=\frac{12}{x}\\y=\frac{16}{y}\end{cases}\Leftrightarrow}\)  \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)

Vậy,  GTNN của  \(D\)  là  \(32\)  \(\Leftrightarrow\)  \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)

16 tháng 9 2020

Ta có :

\(A=x^3y^3.\left(x^2+y^2\right)\)\(=\frac{1}{2}\cdot\left(xy\right)\cdot\left(xy\right)\cdot\left(2xy\right)\cdot\left(x^2+y^2\right)\)

Áp dụng BĐT : \(ab\le\left(\frac{a+b}{2}\right)^2\) ta được :

\(A=\frac{1}{2}\cdot\left(xy\right)\cdot\left(xy\right)\cdot\left(2xy\right)\cdot\left(x^2+y^2\right)\)

\(\le\frac{1}{2}\cdot\left(\frac{x+y}{2}\right)^2\cdot\left(\frac{x+y}{2}\right)^2\cdot\left(\frac{2xy+x^2+y^2}{2}\right)^2\)

\(=\frac{1}{2}\cdot\frac{\left(x+y\right)^4}{16}\cdot\frac{\left(x+y\right)^4}{4}=\frac{1}{2}\cdot\frac{1}{16}\cdot\frac{1}{4}=\frac{1}{128}\)

Nên : \(A\le\frac{1}{128}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy Min \(A=\frac{1}{128}\) khi \(x=y=\frac{1}{2}\)

3 tháng 1 2016

1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)

\(\)

3 tháng 1 2016

phải là \(\le12\)