Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chịu thua vô điều kiện xin lỗi nha : v
muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v
\(a)\)\(x+xy+y=-6\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(y+1\right)=-5\)
Lập bảng xét TH ra là xong
\(b)\) CM : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\)\(x^2+2xy+y^2-4xy\ge0\)
\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
Xin thêm 1 slot đi hok về làm cho -,-
\(b)\) CM : \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\left(x+y\right)^2\) ( bđt Cauchy-Schawarz dạng Engel )
Ta có :
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+2017\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}+2017\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}+2017=\frac{\left(2+\frac{4}{2}\right)^2}{2}+2017=2025\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)
Bài này còn có cách khác là sử dụng tính chất tổng 2 phân số nghịch đảo nhau nhá :))
Chúc bạn học tốt ~
Áp dụng BĐT svacxơ, ta có
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)
Dấu = xảy ra <=>x=y=1/2
^_^
Ta có :
\(A=x^3y^3.\left(x^2+y^2\right)\)\(=\frac{1}{2}\cdot\left(xy\right)\cdot\left(xy\right)\cdot\left(2xy\right)\cdot\left(x^2+y^2\right)\)
Áp dụng BĐT : \(ab\le\left(\frac{a+b}{2}\right)^2\) ta được :
\(A=\frac{1}{2}\cdot\left(xy\right)\cdot\left(xy\right)\cdot\left(2xy\right)\cdot\left(x^2+y^2\right)\)
\(\le\frac{1}{2}\cdot\left(\frac{x+y}{2}\right)^2\cdot\left(\frac{x+y}{2}\right)^2\cdot\left(\frac{2xy+x^2+y^2}{2}\right)^2\)
\(=\frac{1}{2}\cdot\frac{\left(x+y\right)^4}{16}\cdot\frac{\left(x+y\right)^4}{4}=\frac{1}{2}\cdot\frac{1}{16}\cdot\frac{1}{4}=\frac{1}{128}\)
Nên : \(A\le\frac{1}{128}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy Min \(A=\frac{1}{128}\) khi \(x=y=\frac{1}{2}\)