Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\hept{\begin{cases}x+my=m+1\left(1\right)\\mx+y=2m\left(2\right)\end{cases}}\)
từ \(\left(2\right)\) ta có: \(y=2m-mx\) \(\left(3\right)\)
thay (3) vào (1) ta được \(x+m\left(2m-mx\right)=m+1\)
\(\Leftrightarrow x+2m^2-m^2x=m+1\)
\(\Leftrightarrow x\left(1-m^2\right)=m+1-2m^2\)
\(\Leftrightarrow x\left(1-m^2\right)=-m^2+1\)
\(\Leftrightarrow x\left(m^2-1\right)=m^2-1\) \(\left(4\right)\)
để hpt có nghiệm duy nhất, pt (4) pải có nghiệm duy nhất
\(\Leftrightarrow m^2-1\ne0\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)
từ (4) ta có \(x=\frac{m^2-1}{m^2-1}=1\)
từ (3) ta có: \(y=2m-m\)
\(y=m\)
vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;m\right)\)
theo bài ra \(\hept{\begin{cases}x\ge2\\y\ge1\end{cases}}\)
\(\Leftrightarrow m\ge1\)
vậy....
a) khi m = 2 hpt có dạng
\(\hept{\begin{cases}x+2y=3\\2x+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3-2y\\2\left(3-2y\right)+y=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3-2y\\6-4y+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}-3y=-2\\x=3-2y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{5}{3}\end{cases}}\)
vậy....
\(\hept{\begin{cases}mx-y=1\left(1\right)\\x+my=m+6\left(2\right)\end{cases}}\)
a) với \(m=1\) hpt có dạng
\(\hept{\begin{cases}x-y=1\\x+y=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y+1\\y+1+y=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y+1\\2y=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3\\x=4\end{cases}}\)
vậy với \(m=1\) hpt có nghiệm duy nhất \(\left(x;y\right)=\left(4;3\right)\)
b) từ \(\left(1\right)\) ta có \(y=mx-1\) \(\left(3\right)\)
thay (3) vào (2) ta được
\(x+m\left(mx-1\right)=m+6\)
\(\Leftrightarrow x+m^2x-m=m+6\)
\(\Leftrightarrow x\left(m^2+1\right)=2m+6\) \(\left(4\right)\)
để hpt có nghiệm duy nhất thì pt \(\left(4\right)\) pải có nghiệm duy nhất
ta thấy \(m^2+1>0\forall m\)
\(\Rightarrow\) pt (4 ) luôn có 1 nghiệm duy nhất với mọi m
từ (4) ta có: \(x=\frac{2m+6}{m^2+1}\)
khi đó từ (3) ta có: \(y=\frac{m\left(2m+6\right)}{m^2+1}-1\)
\(\Leftrightarrow y=\frac{m^2+6m-1}{m^2+1}\)
với mọi m thì hpt đã cho có nghiệm duy nhất là \(\hept{\begin{cases}x=\frac{2m+6}{m^2+1}\\y=\frac{m^2+6m-1}{m^2+1}\end{cases}}\)
theo bài ra \(3x-y=1\)
\(\Leftrightarrow\frac{3\left(2m+6\right)}{m^2+1}-\frac{m^2+6m-1}{m^2+1}=1\)
\(\Leftrightarrow\frac{6m+18-m^2-6m+1}{m^2+1}=1\)
\(\Leftrightarrow19-m^2=m^2+1\)
\(\Leftrightarrow-2m^2=-18\)
\(\Leftrightarrow m^2=9\)
\(\Leftrightarrow m=\pm3\) ( TMĐK )
vậy ...
BẠN NÀO CÓ THỂ GIẢI CHO TỚ BÀI NÀY CHO MỘT HÌNH VUÔNG CÓ CHU VI 16 CM.LẤY MỖI CÃNH HÌNH VUÔNG LÀM ĐƯỜNG KÍNH, NGƯỜI TA VẼ 4 NỬ HÌNH TRÒN.CHÚNG GIAO NHAU TẠO THÀNH BÔNG HOA .TÍNH DIỆN TÍCH BÔNG HOA ĐÓ
Sai bất đẳng thức giữa của (1) rồi\(x+1>0\Leftrightarrow x>-1.\)
Suy ra phải sửa luôn mấy phần bên dưới. Và kết luận : \(-1< x\le3\)
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1