Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A>0 vì n thuộc N
giả sử A là số nguyên tố thì A chỉ có uoc là +-1 và +-A vậy (-1).1(-A).A =A2
Nếu A là hợp số thì A sẽ phân tích thành tích các thừa số nguyên tố. tich các ước của 1 số nguyên tố là 1 số chính phương, tích các số chính phương là 1 số chihs phương.
Vậy Tích tất cả các ước của A>o bất kì đều là số chính phương.
10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201
2n+1 là số chính phương lẻ nên
2n+1∈ {25;49;81;121;169}
↔ n ∈{12;24;40;60;84}
↔ 3n+1∈{37;73;121;181;253}
↔ n=40
Vậy n=40
Do 2n+1 là số chính phương lẻ nên 2n+1 chia 8 dư 1,vậy n là số chẵn.
Vì 3n+1 là số chính phương lẻ nên 3n+1 chia 8 dư 1
3n⋮8
n⋮8 (1)
Do 2n+1 và 3n+1 đều là số chính phương lẻ có tận cùng là 1;5;9.do đó khi chia cho 5 thì có số dư là 1;0;4
Mà (2n+1)+(3n+1)=5n+2 ,do đo 2n+1 và 3n+1 khi cho cho 5 đều dư 1
n⋮5 (2)
Từ (1) và (2)n⋮40
Vậy n=40k thì ...
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
Gọi ƯCLN(2n+1;3n+2)=d
Ta có: 2n+1 chia hết cho d
=>3(2n+1) chia hết cho d
6n+3 chia hết cho d
có 3n+2 chia hết cho d
=>2(3n+2) chia hết cho d
6n+4 chia hết cho d
=>6n+4-(6n+3) chia hết cho d
=>1 chia hết cho d hay d=1 nên ƯCLN(2n+1;3n+2)=1
Do đó, 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau(ko có chung ước)
mà x=(2n+1)(3n+2) nên x có ước là: 1; 2n+1; 3n+2; x
ta có: x=(2n+1)(3n+2) nên 1*(2n+1)*(3n+2)*x=x*x=x2
Vậy tích tất cả các ước của x là số chính phương