Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)
Giả sử x;y⋮̸ 3
⇒x^2;y^2 chia 3 dư 1
⇒z^2=x^2+y^2 chia 3 dư 2 ( vô lý vì z^2 là số chính phương )
Vậy x⋮3y⋮3⇒xy⋮3
Chứng minh tương tự xy⋮4
(3;4)=1 => x.y chia hết cho 12
Sửa đề : cm\(x^2+y^2+z^2\ge3\)
Theo bunhiacopxki ta có : \(\left(x^2+y^2+z^2\right)\left(z^2+x^2+x^2\right)\ge\left(xy+yz+xz\right)^2\)
\(\Rightarrow x^2+y^2+z^2\ge\left|xy+yz+yz\right|\ge xy+yz+xz\)
\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)(1)
Lại có : \(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)(Cauchy)
\(\Rightarrow x^2+y^2+z^2+3\ge2x+2y+2z\)(2)
Cộng vế với vế của (1) ; (2) ta có :
\(3x^2+3y^2+3z^2+3\ge2\left(xy+yz+xz+x+x+z\right)=2.6=12\)
\(\Rightarrow x^2+y^2+z^2=\frac{12}{3}-1=3\)
Ta có:
x2+y2>=2xy {1}
y2+z2>=2yz {2}
x2+z2>=2xz {3}
cộng{1},{2}và{3}:2{x2+y2+z2}>=2{xy+yz+...
x2+y2+z2>=xy+yz+xz
ta có:x+y+z+xy+yz+xz=6
xy+yz+xz=6-{x+y+z}
để cho bđt có nghĩ khi và chỉ khi:x=y=z=1
suy ra:x+y+z=3
vậy:x2+y2+z2>=6-{x+y+z}
x2+y2+z2>=3
Áp dụng bất đẳng thức: x2 + a2y2 \(\ge\)2axy, ta có:
\(\frac{1+\sqrt{5}}{2}\left(xy+yz+zx\right)\le\frac{\frac{1+\sqrt{5}}{2}\left(x^2+y^2\right)+\left[y^2+\left(\frac{1+\sqrt{5}}{2}\right)^2x^2\right]+\left[\left(\frac{1+\sqrt{5}}{2}\right)^2z^2+x^2\right]}{2}\)=
\(\frac{\left(\frac{1+\sqrt{5}}{2}+1\right)\left(x^2+y^2\right)+2\left(\frac{1+\sqrt{5}}{2}\right)^2z^2}{2}\)
\(\Rightarrow\left(1+\sqrt{5}\right)\le\frac{3+\sqrt{5}}{2}\left(x^2+y^2\right)+\left(3+\sqrt{5}\right)z^2\)\(\Rightarrow x^2+y^2-2z^2\ge\sqrt{5}-1\)\(\Rightarrow P\ge\sqrt{5}-1\)
Vậy GTNN của P là \(\sqrt{5}-1\)khi \(x=y=\frac{1+\sqrt{5}}{2}z.\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
a) x/20 = y/9 = z/6 = (x – 2y + 4z)/(20 – 2.9 + 4.6) = 13/26 = 1/2, suy ra x = 10; y = 4,5 và z = 3
b) x/3 = y/4 và y/5 = z/7 suy ra x/15 = y/20 = z/28 = (x – y + z)/(15 – 20 + 28) = -46/23 = -2
c) x/2 = 2y/5 = 4z/7 => x/8 = y/10 = z/7 (nhân mỗi tỷ số với 1/4)
Suy ra x/8 = y/10 = z/7 = (3x + 5y + 7z)/(3.8 + 5.10 + 7.7) = 123/123 = 1. Vậy x = 8; y = 10 và z = 7
d) Đặt x/2 = 2y/3 = 3z/4 = k thì k^3 = (x/2).(2y/3).(3z/4) = xyz/4 = -108/4 = -27
Suy ra k = -3.
bạn làm bài nào zậy