Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(xy+yz+2xz\le k\left(x^2+y^2+z^2\right)\left(1\right)\)
Tức cần tìm \(k>0\) để \((1)\) đúng,
\(\left(1\right)\Leftrightarrow ky^2-y\left(x+z\right)+kx^2+kz^2-2xz\ge0\)
Coi đây là tam thức bậc hai ẩn \(y\) thì tìm \(\Delta< 0\forall x,z\), có:
\(\Delta=\left(1-4k^2\right)\left(x^2+z^2\right)+2\left(1+4k\right)xz\)
Bất đẳng thức trên đối xứng \(x,z\) nên dự đoán \(P_{Max}\) khi \(x=z\)
Thay \(x=z=1\Rightarrow2k^2-2k-1=0\Rightarrow k=\frac{1+\sqrt{3}}{2}>0\)
Hay \(P_{Max}=3\cdot\frac{1+\sqrt{3}}{2}\)
Ta có:
\(\left(x-y\right)^2+\left(x-z\right)^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(x+y+z\right)^2\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2xz+z^2+x^2+y^2+z^2+2\left(xy+yz+xz\right)\ge A^2\)
\(\Leftrightarrow A^2\le2\left(y^2+yz+z^2\right)+3x^2=36\)
\(\Leftrightarrow-6\le A\le6\)
1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2
= 4/9 .y.y.y . (3/2-3/2.y)^2
=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)
<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5
=4/9 . 243/3125
=108/3125
Đến đó tự giải
Ta có : \(x^2+y^2+z^2-xy-yz-zx=\frac{1}{2}.2.\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(=\frac{1}{2}\left[\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\right]\ge0\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)
Đẳng thức xảy ra khi \(x=y=z\)
hình như bài này có trong đề thi hsg toán 9 tp ha nôi 2016 hay sao ý ^.^
Áp dụng BĐT AM-GM cho 3 số không âm, ta có: \(0< \sqrt[3]{yz.1}\le\frac{y+z+1}{3}\Rightarrow\frac{x}{\sqrt[3]{yz}}\ge\frac{3x}{y+z+1}\)
Làm tương tự với 2 hạng tử còn lại rồi cộng theo vế thì có:
\(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{zx}}+\frac{z}{\sqrt[3]{xy}}\ge3\left(\frac{x}{y+z+1}+\frac{y}{z+x+1}+\frac{z}{x+y+1}\right)\)
\(=3\left(\frac{x^2}{xy+xz+x}+\frac{y^2}{xy+yz+y}+\frac{z^2}{zx+yz+z}\right)\ge^{Schwartz}3.\frac{\left(x+y+z\right)^2}{x+y+z+2\left(xy+yz+zx\right)}\)
\(=3.\frac{x^2+y^2+z^2+2\left(xy+yz+zx\right)}{x+y+z+2\left(xy+yz+zx\right)}\ge9.\frac{xy+yz+zx}{\sqrt{3\left(x^2+y^2+z^2\right)}+2\left(x^2+y^2+z^2\right)}\)
\(=9.\frac{xy+yz+zx}{3+2.3}=xy+yz+zx\) => ĐPCM.
Dấu "=" xảy ra khi x=y=z=1.
Sửa đề : cm\(x^2+y^2+z^2\ge3\)
Theo bunhiacopxki ta có : \(\left(x^2+y^2+z^2\right)\left(z^2+x^2+x^2\right)\ge\left(xy+yz+xz\right)^2\)
\(\Rightarrow x^2+y^2+z^2\ge\left|xy+yz+yz\right|\ge xy+yz+xz\)
\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)(1)
Lại có : \(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)(Cauchy)
\(\Rightarrow x^2+y^2+z^2+3\ge2x+2y+2z\)(2)
Cộng vế với vế của (1) ; (2) ta có :
\(3x^2+3y^2+3z^2+3\ge2\left(xy+yz+xz+x+x+z\right)=2.6=12\)
\(\Rightarrow x^2+y^2+z^2=\frac{12}{3}-1=3\)
Ta có:
x2+y2>=2xy {1}
y2+z2>=2yz {2}
x2+z2>=2xz {3}
cộng{1},{2}và{3}:2{x2+y2+z2}>=2{xy+yz+...
x2+y2+z2>=xy+yz+xz
ta có:x+y+z+xy+yz+xz=6
xy+yz+xz=6-{x+y+z}
để cho bđt có nghĩ khi và chỉ khi:x=y=z=1
suy ra:x+y+z=3
vậy:x2+y2+z2>=6-{x+y+z}
x2+y2+z2>=3
Ta có: \(xy+yz+2xz\le k\left(x^2+y^2+z^2\right)\left(1\right)\)
Hay cần tìm \(k>0\) để \(\left(1\right)\) luôn đúng
\(\left(1\right)\Leftrightarrow ky^2-y\left(x+z\right)+kx^2+kz^2-2xz\ge0\)
Coi đây là tam thức bậc hai ẩn \(y\) thì cần tìm \(\Delta<0\forall x,z\)
\(\Delta=\left(1-4k^2\right)\left(x^2+z^2\right)+2\left(1+4k\right)xz\)
Bất đẳng thức trên đối xứng theo \(x,z\) nên dự đoán \(P_{Max}\) khi \(x=z\)
Thay \(x=z=1\Rightarrow2k^2-2k-1=0\Rightarrow k=\dfrac{1+\sqrt{3}}{2}>0\)
\(\Rightarrow P_{Max}=3\cdot\dfrac{1+\sqrt{3}}{2}\)