K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2016

MinA=-7 khi x=y=2 và z=1

từ đây phân tích ra

7 tháng 12 2016

lm rõ ra giùm cái

3 tháng 6 2016

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=1+2\left(ab+bc+ca\right).\)

\(\Rightarrow A=\left(ab+bc+ca\right)=\frac{1}{2}\left(a+b+c\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)với mọi a,b,c

Vậy A nhỏ nhất bằng -1/2 khi a+b+c =0

29 tháng 5 2022

Ta có : \((x-\dfrac{1}{3})^2+(y-\dfrac{1}{3})^2+(z-\dfrac{1}{3})^2>=0\)

\(=>x^2+y^2+z^2-\dfrac{2}{3}(x+y+z)+\dfrac{1}{3}\ge0\)

\(=>x^2+y^2+z^2+\dfrac{1}{3}\ge\dfrac{2}{3}(x+y+z)\)

\(=>1+\dfrac{1}{3}=\dfrac{4}{3}\ge\dfrac{2}{3}(x+y+z)\)

\(=>x+y+z\le2\)

Do đó : \((a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)=1+2(ab+bc+ca).\)

\(=>A=(ab+ac+bc)=\dfrac{1}{2}(a+b+c)^2-\dfrac{1}{2}\le\dfrac{1}{2}.2^2-\dfrac{1}{2}=\dfrac{3}{2}\)

10 tháng 5 2016

khó quá!!!!!!!!!!!

15 tháng 10 2017

Ta có : \(\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\le\left(x.1+y.1+z.1\right)^2\) (bđt Bunhiacopxki)

\(\Leftrightarrow x^2+y^2+z^2\le\frac{\left(x+y+z\right)^2}{3}\) hay \(1\le\frac{\left(x+y+z\right)^2}{3}\)

\(\Rightarrow\left(x+y+z\right)^2\ge3\Rightarrow x+y+z\ge\sqrt{3}\) (do x;y;z dương)

Áp dụng bđt AM - GM ta có :

\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}.\frac{yz}{x}}=2y\)

\(\frac{xy}{z}+\frac{xz}{y}\ge2\sqrt{\frac{xy}{z}.\frac{xz}{y}}=2x\)

\(\frac{yz}{x}+\frac{xz}{y}\ge2\sqrt{\frac{yz}{x}.\frac{xz}{y}}=2z\)

Cộng vế với vế ta được :

\(2C\ge2\left(x+y+z\right)=2\sqrt{3}\Rightarrow C\ge\sqrt{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

15 tháng 10 2017

Đức Hùng hình như áp dụng sai  ( ngược dấu ) BĐT Bunhiacopxki rồi

4 tháng 10 2019

ai làm giúp mk vs ạ

4 tháng 10 2019

cái dề bài câu b : P= là ở trên í ạ

1 tháng 9 2018

b,Ap dung bdt cauchy schwarz dang engel ta co

\(B=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}>=\frac{\left(x+y+z\right)^2}{3}=\frac{a^2}{3}\)

xay ra dau = khi x=y=z=a/3

7 tháng 6 2015

       x2+y2+z2-yz-4x-3y+7=0
<=> x- 4x + 4 +\(\frac{y^2}{4}\)- 2\(\frac{y}{2}\)z + z2 + \(\frac{3}{4}\)y2 - 3y+ 3 = 0
<=> (x - 2)+ (\(\frac{y}{2}\)- z)2 + 3(\(\frac{y}{2}\)- 1)2 =0
Vậy x,y,z luôn nguyên

sai chỗ nào mong các bạn chỉnh sửa giúp mình ạk!!!!! ^.,..* O.o