Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 28
\(P=\frac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left[\left(a-c\right)^2-b^2\right]}\)
=>\(P=\frac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a-c-b\right)\left(a-c+b\right)}\)
=>\(P=1\)
Bài 30 phải là xy+y+x=3.
Ta có: xy+y+x=3 => (x+1)(y+1)=4(1)
yz+y+z=8 => (y+1)(z+1)=9(2)
zx+x+z=15 => (x+1)(z+1)=16(3)
Nhân (1), (2) và (3) theo vế, ta có:
[(x+1)(y+1)(z+1)]2=576
=> (x+1)(y+1)(z+1)=24(I) hoặc (x+1)(y+1)(z+1)=-24(II)
Lần lượt thay (1),(2),(3) vào (I),(II), tính x,y,z.
Kết quả: P=43/6 hoặc P=-79/6
Vì x;y;z là 3 cạnh của tam giác
=> \(x+y>z\)
\(\Rightarrow x+y+z>z+z\)
\(\Rightarrow x+y+z>2z\)
\(\Rightarrow2>2z\Rightarrow z< 1\)
Chứng minh tương tự ta được: x < 1 ; y < 1
\(\Rightarrow1-x>0;1-y>0;1-z>0\)
\(\Rightarrow\left(1-x\right)\left(1-y\right)\left(1-z\right)>0\)
\(\Rightarrow\left(1-y-x+xy\right)\left(1-z\right)>0\)
\(\Rightarrow1-y-x+xy-z+yz+xz-xyz>0\)
\(\Rightarrow1-\left(x+y+z\right)+xy+yz+xz-xyz>0\)
\(\Rightarrow1-2+xy+yz+xz-xyz>0\)
\(\Rightarrow-1+xy+yz+xz-xyz>0\)
\(\Rightarrow2\left(-1+xy+yz+xz-xyz\right)>0\)
\(\Rightarrow-2+2xy+2yz+2xz-2xyz>0\)
\(\Rightarrow-\left(2-2xy-2yz-2xz+2xyz\right)>0\)
\(\Rightarrow2-2xy-2yz-2xz+2xyz< 0\)
\(\Rightarrow4-2xy-2yz-2xz+2xyz< 2\)
\(\Rightarrow\left(x+y+z\right)^2-2xy-2yz-2xz+2xyz< 2\) (Vì x+y+z = 2 => (x+y+z)2 = 22 = 4)
\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz-2xy-2yz-2xz+2xyz< 2\)
\(\Rightarrow x^2+y^2+z^2+2xyz< 2\)
=> đpcm
1, P=( b2+c2-a2)-4b2c2
= (b2+c2-a2-2bc)(b2+c2-a2+2bc)
= (b-c-a)(a+b+c)(b+c+a)(b+c-a)
Vì a,b,c là 3 cạnh của 1 tam giác nên ta có:
b-c-a<0, a+b+c>0, b+c+a>0,b+c-a>0
=> P <0 (đpcm)
2, x2+y2+z2=1
Suy ra : 0 <= x2<=1, tương tự như vậy vs y và z( <= là nhỏ hơn hoặc bằng)
Xét x2+y2+z2-\(x^3\)-\(y^3\)-\(z^3\)=0
=>x2(1-x)+y2(1-y)+z2(1-z)=0(*)
có x2 >=0,y2>=0, z2>=0 vs mọi x, y,z (**) (>= là lớn hơn hoặc bằng)
Lại có:
x<=1, y<=1,z<=1 suy ra : 1-x>=0, 1-y>=0, 1-z>=0 (***)
Từ (**) và (***) suy ra:
x2(1-x)+y2(1-y)+z2(1-z)>=0 vs mọi x,y,z thỏa mãn điều kiện
Nên từ (*) suy ra: x2(1-x)=0, y2(1-y)=0, z2(1-z)=0
Do đó:
trường hợp 1:
x=1 suy ra y=z=0 vì thế xyz=0
y=1 suy ra x=z=0 vì thế xyz=0
z=1 suy ra x=y=0 vì thế xyz=0
Vậy trong mọi trường hợp xyz=0
Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)
khi đó:
\(P\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(a+c\right)}\)
\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)
Lại có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)=> \(\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
=> \(P\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Dấu "=" xảy ra <=> a = b = c = 1
Vậy max P = 3 tại a = b = c =1.
Không thích làm cách này đâu nhưng đường cùng rồi nên thua-_-
Đặt \(\sqrt{x+y}=a;\sqrt{y+z}=b;\sqrt{z+x}=c\) suy ra
\(x=\frac{a^2+c^2-b^2}{2};y=\frac{a^2+b^2-c^2}{2};z=\frac{b^2+c^2-a^2}{2}\). Ta cần chứng minh:
\(abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
Đây là bất đẳng thức Schur bậc 3, ta có đpcm.
\(\frac{x^3}{y}+xy\ge2\sqrt{\frac{x^3}{y}.xy}=2x^2\)
\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge2\left(x^2+y^2+z^2\right)-xy-yz-zx\ge2\left(x^2+y^2+z^2\right)-\left(xy+yz+zx\right)=1\)
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)