K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2023

Áp dụng BĐT Cauchy-Schwarz ta có:
`B>=(1+2+3)^2/(x+y+z)=36/6=6`

Dấu "=" xảy ra `<=>(x;y;z)=(3/7;12/7;27/7)`

Vậy `B_(min)=6<=>(x;y;z)=(3/7;12/7;27/7)`

Tôi bổ sung đề bài : Cho x,y,z >0 và x+y+z=1 tìm min của x^2(y+z)/yz + y^2(x+z)/xz + z^2(x+y)/xy?

                                  BĐT cô si: x²/z + z ≥ 2x và x²/y + y ≥ 2x => x²/z + x²/y + z+y ≥ 4x 
                                  => x²(y+z)/yz + y+z ≥ 4x 
                                  tương tự: y²(x+z)/xz + x+z ≥ 4y 
                                  và z²(x+y)/xy + x+y ≥ 4z 
                                  
                                  cộng lại hết: x²(y+z)/yz + y²(x+z)/xz + z²(x+y)/xy + 2(x+y+z) ≥ 4(x+y+z) 
                                  => x²(y+z)/yz + y²(x+z)/xz + z²(x+y)/xy ≥ 2(x+y+z) = 2 
                                  min = 2, đạt khi x = y = z = 1/3 
                                                                                         ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

5 tháng 6 2019

Bổ sung chi vậy bn

Có; \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{x^2}{xy+xz}+\frac{y^2}{xy+yz}+\frac{z^2}{xz+yz}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+xz+yz\right)}\ge\frac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\frac{3}{2}\)

Vậy Min A=3/2

9 tháng 4 2017

Đặt A=x^4+y^4+z^4 ,P=x^2+y^2+z^2

Ta có A=(x^2)^2+(y^2)^2+(z^2)^2

Áp dụng bđt Cauchy-Schwarz ta có

3A=[(x^2)^2+(y^2)^2+(z^2)^2](1^2+1^2+1^2) >/ (x^2+y^2+z^2)^2=> A >/ (x^2+y^2+z^2)^2/3

Áp dụng bđt Cauchy-Schwarz lần 2 

3P=(x^2+y^2+z^2)(1^2+1^2+1^2) >/ (x+y+z)^2=> P >/  (x+y+z)^2/3 >/ 2^2/3 >/ 4/3 

=> A >/ (4/3)^2/3=16/27

Đẳng thức xảy ra <=> x=y=z=2/3

9 tháng 10 2017

ý em là bài này hả ?

Cho các số dương x,y,z thoã mãn x+y+z=3 Tìm GTNN của 2(x^3+y^3+z^3)-(x^2+y^2+z^2)+2...

bài làm

ta có : x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-... bạn tự chứng minh nha, khai triển vế phải ra là xong :D) 
sau đó áp dụng điều kiện x+y+z=3 rồi thay vào biểu thức ban đầu ta có 
BT= 5(x^2+y^2+z^2)-6(xy+yz+zx) + 8xyz +3 
= 8(x^2+y^2+z^2)-3(x+y+z)^2 + 8xyz +3 
sau đó bạn áp dụng BDT xyz>=(x+y-z)(z+x-y)(y+z-x) sau đó thế x+y+z=3 và khai triển ra ta được 
xyz>=(3-2z)(3-2y)(3-2z)=27-18(x+y+z)+1... -8xyz 
thay x+y+z=3 ta được: 
9xyz >=12(xy+yz+zx)-27 
>> BT + xyz >= 8(x^2+y^2+z^2)-27+3+ 12(xy+yz+zx)-27=2(x^2+y^2+z^2)+6(x+y+z)^... 
lại có 3(x^2+y^2+z^2)>=(x+y+z)^2 ( BDT Bunhiacopxki) >> (x^2+y^2+z^2)>=3 
27xyz<=(x+y+z)^3>> xyz<=1 
vậy BT + 1>= BT +xyz >= 6+ 54-51 <> BT >=8. ĐT khi x=y=z=1 

9 tháng 10 2017

đây có đúng là thầy không vậy 

26 tháng 8 2017

1;2;3

5 tháng 12 2017

Ta có:

\(xyz\ge x+y+z+2\ge2+3\sqrt[3]{xyz}\)

\(\Leftrightarrow\frac{x+y+z}{3}\ge\sqrt[3]{xyz}\ge2\)

\(\Leftrightarrow x+y+z\ge6\)

25 tháng 3 2020

\(T=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)  ; x + y + z = 1

\(\Rightarrow T=\frac{x+y+z}{16x}+\frac{x+y+z}{4y}+\frac{x+y+z}{z}\)

\(=\frac{1}{16}+\frac{y}{16x}+\frac{z}{16x}+\frac{x}{4y}+\frac{1}{4}+\frac{z}{4y}+\frac{x}{z}+\frac{y}{z}+1\)

\(=\left(\frac{1}{16}+\frac{1}{4}+1\right)+\left(\frac{y}{16x}+\frac{x}{4y}\right)+\left(\frac{z}{16x}+\frac{x}{z}\right)+\left(\frac{z}{4y}+\frac{y}{z}\right)\)                    (1)

\(x;y;z>0\Rightarrow\frac{y}{16x};\frac{x}{4y};\frac{z}{16x};\frac{x}{z};\frac{z}{4y};\frac{y}{z}>0\)

áp dụng bđt cô si : 

\(\frac{y}{16x}+\frac{x}{4y}\ge2\sqrt{\frac{y}{16x}\cdot\frac{x}{4y}}=\frac{1}{4}\)                             (2)

\(\frac{z}{16x}+\frac{x}{z}\ge2\sqrt{\frac{z}{16x}\cdot\frac{x}{z}}=\frac{1}{2}\)                                 (3)

\(\frac{x}{4y}+\frac{y}{z}\ge2\sqrt{\frac{z}{4y}\cdot\frac{y}{z}}=1\)                                        (4)

(1)(2)(3)(4) \(\Rightarrow T\ge\frac{1}{16}+\frac{1}{4}+1+\frac{1}{4}+\frac{1}{2}+1\)

\(\Rightarrow T\ge\frac{49}{16}\)

dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{y}{16x}=\frac{x}{4y}\\\frac{z}{16x}=\frac{x}{z}\\\frac{z}{4y}=\frac{y}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}4y^2=16x^2\\z^2=16x^2\\z^2=4y^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2x\\z=4x\\z=2y\end{cases}}\) có x+y+z = 1

=> x + 2x + 4x = 1

=> x = 1/7

xong tìm ra y = 2/7 và z = 4/7

4 tháng 10 2017

Áp dụng bất đẳng thức svác sơ ta có 

\(A\ge\frac{\left(x+y+z\right)^2}{y+3z+z+3x+x+3y}=\frac{\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{x+y+x}{4}=\frac{3}{4}\)

4 tháng 10 2017

Đặt \(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}\)

Áp dụng bất đẳng thức Canchy Schwarz dạng Engel : 

\(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}>\frac{\left(x+y+z\right)^2}{y+3y+z+3z+x+3x}=\frac{\left(x+y+z\right)^2}{4x+4y+4z}=\frac{\left(x+y+z\right)^2}{4.\left(x+y+z\right)}=\frac{3^2}{4}=\frac{3}{4}\)

Dấu " = " xảy ra khi x=y=z=1.