K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

N
1 tháng 7 2017

Hình như đề có vấn đề đó bạn

theo mình

Có : x+y+z =1

\(\Rightarrow\)\(x^2+y^2+z^2+2xz+2yz+2xy=1\)

\(\Leftrightarrow\)xy+xz+zy =0

Lại có : \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=1\left(1-0\right)=1\)

\(x^3+y^3+z^3=1+3=4\)

\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=4\)

2 tháng 7 2017

\(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{\left(yz\right)^3+\left(xz\right)^3+\left(xy\right)^3}{x^3y^3z^3}=\left(yz\right)^3+\left(xz\right)^3+\left(xy\right)^3\)

\(=\left(xy+yz+zx\right)\left[\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2-xy^2z-xyz^2-x^2yz\right]+3xy.yz.zx\)

\(=0+3=3\)

13 tháng 8 2018

Ta có:

\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\)

Áp dụng BĐT Cosi ta có:

\(x\sqrt{1-x^2}\le\dfrac{x^2+1-x^2}{2}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{x^3}{x\sqrt{1-x^2}}\ge2x^3\)

Cmtt:

\(\dfrac{y^3}{y\sqrt{1-y^2}}\ge2y^3\)

\(\dfrac{z^3}{z\sqrt{1-z^2}}\ge2z^3\)

\(\Rightarrow\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}+\dfrac{y^3}{y\sqrt{1-y^2}}+\dfrac{z^3}{z\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\) (ĐPCM)

26 tháng 5 2018

đề đúng chứ bạn

26 tháng 5 2018

thiếu, đẳng thức xảy ra khi nào?

14 tháng 4 2017

1) \(1019x^2+18y^4+1007z^2\)

\(=\left(15x^2+15y^4\right)+\left(3y^4+3z^2\right)+\left(1004x^2+1004z^2\right)\)

\(\ge2\sqrt{15x^2.15y^4}+2\sqrt{3y^4.3z^2}+2\sqrt{1004x^2.1004z^2}=30xy^2+6y^2z+2008xz\left(đpcm\right)\)

14 tháng 4 2017

mơn bạn!!

16 tháng 6 2017

\(ax^3=by^3=cz^3\Rightarrow\dfrac{ax^2}{\dfrac{1}{x}}=\dfrac{by^2}{\dfrac{1}{y}}=\dfrac{cz^2}{\dfrac{1}{z}}=\dfrac{ax^2+by^2+cz^2}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=ax^2+by^2+cz^2\)

=> \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{ax^3}=\sqrt[3]{by^3}=\sqrt[3]{cz^3}\)

\(=\dfrac{\sqrt[3]{a}}{\dfrac{1}{x}}=\dfrac{\sqrt[3]{b}}{\dfrac{1}{y}}=\dfrac{\sqrt[3]{c}}{\dfrac{1}{z}}=\dfrac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}.\)

Vay \(\sqrt[3]{ax^2+by^2+cz^2}=\)\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}.\)

16 tháng 6 2017

Cảm ơn bạn yeu

9 tháng 10 2017

Biến đổi vế trái ta có:

\(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)

\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b\right)\)

\(=\left(a+b+c\right)^3-3\left(a+b\right)\left(ac+bc+c^2+ab\right)\)

\(=\left(a+b+c\right)^3-3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)*

\(a+b+c=0\)\(\Rightarrow\)*\(=-3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

cũng có \(\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\) Thay vào biểu thức trên ta được

\(-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=3abc\)

\(VT=VP\)=> đpcm

9 tháng 10 2017

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\)

ta có \(B=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)

\(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\Rightarrow B=xyz.\dfrac{3}{xyz}=3\)

1 tháng 12 2018

\(\sqrt{1+8x^3}=\sqrt{\left(1+2x\right)\left(1-2x+4x^2\right)}\le\dfrac{1+2x+1-2x+4x^2}{2}=\dfrac{2+4x^2}{2}=1+2x^2\)

(AM-GM)

CMTT và áp dụng Cauchy-Schwarz:

\(P\ge\dfrac{9}{\sqrt{1+8x^3}+\sqrt{1+8y^3}+\sqrt{1+8z^3}}\)

\(\ge\dfrac{9}{1+2x^2+1+2y^2+1+2z^2}=\dfrac{9}{3+2\left(x^2+y^2+z^2\right)}=\dfrac{9}{3+2.3}=1\)

\("="\Leftrightarrow x=y=z=1\)

12 tháng 5 2017

Dự đoán dấu = xảy ra khi x=y=\(\dfrac{z}{2}\)

ta có: \(VT=3+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{x^2}{z^2}+\dfrac{z^2}{x^2}\)

\(=3+\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\right)+\left(\dfrac{z^2}{y^2}+\dfrac{z^2}{x^2}\right)\)

Áp dụng BĐT AM-GM: \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\ge2\)

Áp dụng BĐT bunyakovsky:\(\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\ge\dfrac{1}{2}\left(\dfrac{y}{z}+\dfrac{x}{z}\right)^2=\dfrac{1}{2}.\dfrac{\left(x+y\right)^2}{z^2}\)

\(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\ge\dfrac{1}{2}\left(\dfrac{z}{x}+\dfrac{z}{y}\right)^2\ge\dfrac{1}{2}\left(\dfrac{4z}{x+y}\right)^2=\dfrac{8z^2}{\left(x+y\right)^2}\)(AM-GM)

do đó \(VT\ge5+\dfrac{1}{2}\dfrac{\left(x+y\right)^2}{z^2}+\dfrac{8z^2}{\left(x+y\right)^2}\)

Đặt \(\dfrac{z}{x+y}=a\)(a>0)thì \(a\ge1\)do \(z\ge x+y\)

\(VT\ge8a^2+\dfrac{1}{2a^2}+5=\dfrac{a^2}{2}+\dfrac{1}{2a^2}+\dfrac{15}{2}a^2+5\ge\dfrac{a^2}{2}+\dfrac{1}{2a^2}+\dfrac{25}{2}\)

Áp dụng BĐT AM-GM: \(\dfrac{a^2}{2}+\dfrac{1}{2a^2}\ge2\sqrt{\dfrac{a^2}{4a^2}}=1\)

do đó \(VT\ge1+\dfrac{25}{2}=\dfrac{27}{2}\)(đpcm)

Dấu = xảy ra khi a=1 hay \(x=y=\dfrac{z}{2}\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2019

Lời giải:

Ta có:
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\left(\frac{1}{x+y+z}\right)=1\)

\(\Leftrightarrow \frac{xy+yz+xz}{xyz}.(x+y+z)=1\Leftrightarrow (xy+yz+xz)(x+y+z)=xyz\)

\(\Leftrightarrow xy(x+y)+yz(y+z)+xz(x+z)+2xyz=0\)

\(\Leftrightarrow xy(x+y+z)+yz(y+z+x)+xz(x+z)=0\)

\(\Leftrightarrow y(x+y+z)(x+z)+xz(x+z)=0\)

\(\Leftrightarrow (x+z)[y(x+y+z)+xz]=0\)

\(\Leftrightarrow (x+z)(y+x)(y+z)=0\)

Do đó:

\(B=(x+y)(x^{20}+....+y^{20})(y+z)(y^{10}+...+z^{10})(z+x)(z^{2016}+x^{2016})\)

\(=(x+y)(y+z)(x+z)(x^{20}+..+y^{20})(y^{10}+..+z^{10})(z^{2016}+x^{2016})=0\)

AH
Akai Haruma
Giáo viên
27 tháng 8 2019

Lời giải:

Ta có:
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\left(\frac{1}{x+y+z}\right)=1\)

\(\Leftrightarrow \frac{xy+yz+xz}{xyz}.(x+y+z)=1\Leftrightarrow (xy+yz+xz)(x+y+z)=xyz\)

\(\Leftrightarrow xy(x+y)+yz(y+z)+xz(x+z)+2xyz=0\)

\(\Leftrightarrow xy(x+y+z)+yz(y+z+x)+xz(x+z)=0\)

\(\Leftrightarrow y(x+y+z)(x+z)+xz(x+z)=0\)

\(\Leftrightarrow (x+z)[y(x+y+z)+xz]=0\)

\(\Leftrightarrow (x+z)(y+x)(y+z)=0\)

Do đó:

\(B=(x+y)(x^{20}+....+y^{20})(y+z)(y^{10}+...+z^{10})(z+x)(z^{2016}+x^{2016})\)

\(=(x+y)(y+z)(x+z)(x^{20}+..+y^{20})(y^{10}+..+z^{10})(z^{2016}+x^{2016})=0\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2})^2\leq (x^2+y^2+z^2)(1-y^2+1-z^2+1-x^2)\)

Áp dụng BĐT AM-GM:

\((x^2+y^2+z^2)(1-y^2+1-z^2+1-x^2)\leq \left(\frac{x^2+y^2+z^2+1-y^2+1-z^2+1-x^2}{2}\right)^2=(\frac{3}{2})^2\)

Do đó:

\((x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2})^2\leq (\frac{3}{2})^2\)

\(\Rightarrow x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\leq \frac{3}{2}\)

Dấu "=" xảy ra khi \(x^2+y^2+z^2=1-y^2+1-z^2+1-x^2\Leftrightarrow x^2+y^2+z^2=\frac{3}{2}\)

Vậy $A=\frac{3}{2}$