Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô - Si cho các số dương , ta có :
\(\left\{{}\begin{matrix}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\x^2+z^2\ge2xz\end{matrix}\right.\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)
Áp dụng BĐT Cô - Si dạng Engel , ta có :
\(\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{3+xy+yz+xz}\ge\dfrac{9}{3+x^2+y^2+z^2}=\dfrac{9}{6}=\dfrac{3}{2}\)
\("="\Leftrightarrow x=y=z=1\)
\(\text{Cho 3 số dương x, y, z thỏa mãn }x+y+z=3\)
\(\text{Chứng minh rằng }T=\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)
➤➤➤Chứng minh:
➢ Áp dụng bất đẳng thức AM - GM
\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}\left(\text{vì }x+y+z=3\right)=\dfrac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}=\dfrac{x}{x+\sqrt{xz}+\sqrt{xy}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
➢ Tương tự:
\(\dfrac{y}{y+\sqrt{3y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
\(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
➢ Công vế theo vế 3 bất đẳng thức cùng chiều
\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)
➢ \(\text{Đẳng thức xảy ra khi }x=y=z=1\)
➤ \(Max_T=1\Leftrightarrow x=y=z=1\)
1) \(1019x^2+18y^4+1007z^2\)
\(=\left(15x^2+15y^4\right)+\left(3y^4+3z^2\right)+\left(1004x^2+1004z^2\right)\)
\(\ge2\sqrt{15x^2.15y^4}+2\sqrt{3y^4.3z^2}+2\sqrt{1004x^2.1004z^2}=30xy^2+6y^2z+2008xz\left(đpcm\right)\)
Dự đoán dấu = xảy ra khi x=y=\(\dfrac{z}{2}\)
ta có: \(VT=3+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{x^2}{z^2}+\dfrac{z^2}{x^2}\)
\(=3+\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\right)+\left(\dfrac{z^2}{y^2}+\dfrac{z^2}{x^2}\right)\)
Áp dụng BĐT AM-GM: \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\ge2\)
Áp dụng BĐT bunyakovsky:\(\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\ge\dfrac{1}{2}\left(\dfrac{y}{z}+\dfrac{x}{z}\right)^2=\dfrac{1}{2}.\dfrac{\left(x+y\right)^2}{z^2}\)
\(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\ge\dfrac{1}{2}\left(\dfrac{z}{x}+\dfrac{z}{y}\right)^2\ge\dfrac{1}{2}\left(\dfrac{4z}{x+y}\right)^2=\dfrac{8z^2}{\left(x+y\right)^2}\)(AM-GM)
do đó \(VT\ge5+\dfrac{1}{2}\dfrac{\left(x+y\right)^2}{z^2}+\dfrac{8z^2}{\left(x+y\right)^2}\)
Đặt \(\dfrac{z}{x+y}=a\)(a>0)thì \(a\ge1\)do \(z\ge x+y\)
\(VT\ge8a^2+\dfrac{1}{2a^2}+5=\dfrac{a^2}{2}+\dfrac{1}{2a^2}+\dfrac{15}{2}a^2+5\ge\dfrac{a^2}{2}+\dfrac{1}{2a^2}+\dfrac{25}{2}\)
Áp dụng BĐT AM-GM: \(\dfrac{a^2}{2}+\dfrac{1}{2a^2}\ge2\sqrt{\dfrac{a^2}{4a^2}}=1\)
do đó \(VT\ge1+\dfrac{25}{2}=\dfrac{27}{2}\)(đpcm)
Dấu = xảy ra khi a=1 hay \(x=y=\dfrac{z}{2}\)