\(^2\)+y\(^2\)+z\(^2\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2018

Áp dụng BĐT Cô - Si cho các số dương , ta có :

\(\left\{{}\begin{matrix}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\x^2+z^2\ge2xz\end{matrix}\right.\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)

Áp dụng BĐT Cô - Si dạng Engel , ta có :

\(\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{3+xy+yz+xz}\ge\dfrac{9}{3+x^2+y^2+z^2}=\dfrac{9}{6}=\dfrac{3}{2}\)

\("="\Leftrightarrow x=y=z=1\)

5 tháng 4 2018

\(\dfrac{\sqrt{1\left(x-1\right)}}{x}\le\dfrac{1+x-1}{2x}=\dfrac{1}{2}\) ( cauchy )

TT,\(\dfrac{\sqrt{y-2}}{y}\le\dfrac{1}{2\sqrt{2}};\dfrac{\sqrt{z-3}}{z}\le\dfrac{1}{2\sqrt{3}}\)

cộng vế theo vế => đpcm

5 tháng 4 2018

Thì biết pass facebook thôi chứ cũng không biết có hack không

Bạn ấy đăng nhập bằng FACEBOOK mà

8 tháng 8 2018

Ta chứng minh BĐT: \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( luôn đúng)

Áp dụng BĐT Cauchy - Schwarz dạng Engel ta có:

\(\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{\left(1+1+1\right)^2}{1+xy+1+yz+1+xz}=\dfrac{9}{3+xy+yz+xz}\ge\dfrac{9}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)\(\RightarrowĐPCM\)

\("="\Leftrightarrow x=y=z=1\)

8 tháng 8 2018

Cách 2:

Áp dụng BĐT AM - GM, ta có:

\(\dfrac{1}{1+xy}+\dfrac{1+xy}{4}\ge2\sqrt{\dfrac{1}{1+xy}.\dfrac{1+xy}{4}}=1\)

\(\dfrac{1}{1+yz}+\dfrac{1+yz}{4}\ge1\)

\(\dfrac{1}{1+zx}+\dfrac{1+zx}{4}\ge1\)

Cộng vế theo vế BĐT, ta được:

\(\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}+\dfrac{1+1+1+xy+yz+zx}{4}\ge1+1+1\)

\(\Leftrightarrow\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}+\dfrac{3+xy+yz+zx}{4}\ge3\)

\(\Leftrightarrow\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge3-\dfrac{3+xy+yz+zx}{4}\ge3-\dfrac{3+\left(x^2+y^2+z^2\right)}{4}=3-\dfrac{3+3}{4}=\dfrac{3}{2}\)\("="\Leftrightarrow x=y=z=1\)

28 tháng 12 2017

Ta có bất đẳng thức phụ: \(xy+yz+xz\le x^2+y^2+z^2\)

\(\Rightarrow xy+yz+xz\le x^2+y^2+z^2\le3\)

Áp dụng bất đẳng thức Cauchy-Schwarz:

\(P=\dfrac{1}{1+xy}+\dfrac{1}{1+xz}+\dfrac{1}{1+yz}\ge\dfrac{\left(1+1+1\right)^2}{1+xy+1+xz+1+yz}\ge\dfrac{\left(1+1+1\right)^2}{1+1+1+3}=\dfrac{9}{6}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi: \(x=y=z=1\)

28 tháng 12 2017

thanks

10 tháng 5 2018

\(\text{Cho 3 số dương x, y, z thỏa mãn }x+y+z=3\)

\(\text{Chứng minh rằng }T=\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)

➤➤➤Chứng minh:

➢ Áp dụng bất đẳng thức AM - GM

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}\left(\text{vì }x+y+z=3\right)=\dfrac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}=\dfrac{x}{x+\sqrt{xz}+\sqrt{xy}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

➢ Tương tự:

\(\dfrac{y}{y+\sqrt{3y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

➢ Công vế theo vế 3 bất đẳng thức cùng chiều

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

\(\text{Đẳng thức xảy ra khi }x=y=z=1\)

\(Max_T=1\Leftrightarrow x=y=z=1\)

5 tháng 7 2018

\(1.\) Gỉa sử : \(\sqrt{25-16}< \sqrt{25}-\sqrt{16}\)

\(\Leftrightarrow3< 1\) ( Vô lý )

\(\Rightarrow\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)

\(2.\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< a-b\)

\(\Leftrightarrow a-2\sqrt{ab}+b< a-b\)

\(\Leftrightarrow2b-2\sqrt{ab}< 0\)

\(\Leftrightarrow2\left(b-\sqrt{ab}\right)< 0\)

Ta có :\(a>b\Leftrightarrow ab>b^2\Leftrightarrow\sqrt{ab}>b\)

\(\RightarrowĐpcm.\)

\(2a.\) Áp dụng BĐT Cauchy , ta có :

\(a+b\ge2\sqrt{ab}\left(a;b\ge0\right)\)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(b.\) Áp dụng BĐT Cauchy cho các số dương , ta có :

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\left(x,y>0\right)\left(1\right)\)

\(\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{yz}}\left(y,z>0\right)\left(2\right)\)

\(\dfrac{1}{x}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{xz}}\left(x,z>0\right)\left(3\right)\)

Cộng từng vế của ( 1 ; 2 ; 3 ) , ta được :

\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge2\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)

5 tháng 7 2018

\(3a.\sqrt{x-4}=a\left(a\in R\right)\left(x\ge4;a\ge0\right)\)

\(\Leftrightarrow x-4=a^2\)

\(\Leftrightarrow x=a^2+4\left(TM\right)\)

\(3b.\sqrt{x+4}=x+2\left(x\ge-2\right)\)

\(\Leftrightarrow x+4=x^2+4x+4\)

\(\Leftrightarrow x^2+3x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-3\left(KTM\right)\end{matrix}\right.\)

KL....

12 tháng 3 2017

solution:

ta có: \(3=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Leftrightarrow xyz\le1\)(theo BĐT cauchy cho 3 số )

\(\Rightarrow xy\le\dfrac{1}{z};yz\le\dfrac{1}{x};xz\le\dfrac{1}{y}\)

\(\Rightarrow\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{x}{\dfrac{1}{\sqrt[3]{x}}}=x\sqrt[3]{x}=\sqrt[3]{x^4}\)

tương tự ta có:\(\dfrac{y}{\sqrt[3]{xz}}\ge\sqrt[3]{y^4};\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{z^4}\)

cả 2 vế các BĐT đều dương,cộng vế với vế:

\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\)

Áp dụng BĐT bunyakovsky ta có:

\(\left(\sqrt[3]{x^4}+\sqrt[3]{y^4}+\sqrt[3]{z^4}\right)\left(x^2+y^2+z^2\right)\ge\left(\sqrt[3]{x^8}+\sqrt[3]{y^8}+\sqrt[3]{z^8}\right)^2=\left(x^2+y^2+z^2\right)^2\)

\(\Rightarrow S\ge x^2+y^2+z^2\)

đến đây ta lại có BĐT quen thuộc: \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow S\ge xy+yz+xz\left(đpcm\right)\)

dấu = xảy ra khi và chỉ khi x=y=z mà x2+y2+z2=3 => x=y=z=1

*cách khác : Áp dụng BĐT cauchy - schwarz(bunyakovsky):

\(S=\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}=\dfrac{x^4}{x^3.\dfrac{1}{\sqrt[3]{x}}}+\dfrac{y^4}{y^3.\dfrac{1}{\sqrt[3]{y}}}+\dfrac{z^4}{z^3.\dfrac{1}{\sqrt[3]{z}}}\)

\(S\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge xy+yz+xz\)

13 tháng 3 2017

cái cách 2 là svac mà nhỉ

16 tháng 6 2018
https://i.imgur.com/Godbi3O.jpg