Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình cũng mới hỏi câu này luôn ấy, mình có cách làm nhưng sợ không đúng thôi.
P = x4y4 + x4 + y4 + 1 + 12x2y2 – 16xy – 4
P = x4y4 + x4 + y4 + 1 + 16x2y2 – 16xy + 4 – 4x2y2 – 8
P = x4y4 + x4 + y4 + 1 + (4xy – 2)2 – 4x2y2 – 8
P = (x4 – 2x2y2 + y4) + (x4y4 – 2x2y2 + 1) – 8 + (4xy – 2)2
P = (x2 – y2)2 + (x2y2 – 1)2 – 8 + (4xy – 2)2
P = (x + y)2(x – y)2 + (xy + 1)2(xy – 1)2 + (4xy – 2)2 – 8
P = 4(x – y)2 + (xy + 1)2(xy – 1)2 + 4(2xy – 1)2 – 8
MinP = Min 4(x – y)2 + min (xy + 1)2(xy – 1)2 + min 4(2xy – 1)2 – 8
Min 4(x – y)2 = 0 => x – y = 0 => x = y = 1 => MinP = – 4
Min (xy + 1)2(xy – 1)2 = 0 =>
TH1: xy = -1 (không có x,y thỏa mãn)
TH2: xy = 1 => x = y = 1 => Min P = – 4
Min 4(2xy – 1)2 = 0 => xy = \(\frac{1}{2}\)(không có x,y thỏa mãn)
Vậy thì kết quả là -4, Violympic chưa mở nên mình chưa thử kết quả được, thân ái.
Cách làm:
(1+x4)(1+y4)
Áp dụng BĐT Bu-nhi-a-cốp-xki, ta có:
\(\left[1+\left(x^2\right)^2\right]+\left[x+\left(y^2\right)^2\right]\ge\left(x^2+y^2\right)^2\)
\(\left[1+\left(x^2\right)\right]^2+\left[1+\left(y\right)^2\right]^2\ge\left[\left(x+y\right)^2-2xy\right]^2\)
Để đạt Min thì \(\left(1+x^4\right)\left(1+y^4\right)=\left[\left(x+y\right)^2-2xy\right]\)
Đặt xy=t, ta có:
\(P=\left(1+x^4\right)\left(1+y^4\right)+4\left(xy-1\right)+\left(3xy-1\right)\)
\(\Leftrightarrow P=\left[\left(x+y\right)^2-2t\right]^2+4\left(t-1\right)+\left(3t-1\right)\)
\(\Leftrightarrow P=\left(4-2t\right)^2+\left(4t-4\right)\left(3t-1\right)\)
\(\Leftrightarrow P=16-16t+4t^2+12t^2-16t+4\)
\(\Leftrightarrow P=16t^2-32t+16+4\)
\(\Leftrightarrow P=\left(4t-4\right)^2+4\)
Ta có: \(\left(4t-4\right)^2\ge0\)
\(\Rightarrow\left(4t-4\right)^2+4\ge4\)
\(\Rightarrow Min_P=4\)
@Phương An
\(P=\left(1+x^4\right)\left(1+y^4\right)+4\left(xy-1\right)\left(3xy-1\right)\)
Vì \(\left(1+x^4\right)\ge1;\left(1+y^4\right)\ge1\) => Để \(P_{min}\Leftrightarrow4\left(xy-1\right)\left(3xy-1\right)\)
\(\Rightarrow4\left(xy-1\right)\left(3xy-1\right)=0\Leftrightarrow\left(xy-1\right)=0\)
Mà \(x+y=2\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) thì \(\left(xy-1\right)=0\)
\(\Rightarrow\left(1+1^4\right)\cdot\left(1+1^4\right)+4\cdot\left(1\cdot1-1\right)\left(3\cdot1\cdot1-1\right)\)
\(\Rightarrow2\cdot2+0\)
\(\Rightarrow P_{min}=4\)
hôm qua thì tui cũng gặp bài này nè nhưng không biết làm , khó quá !
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
*Max
2(x^2+y^2)-2xy=8
<=> x^2+y^2+ (x-y)^2=8
<=> A\(\le\)8
Dấu bằng xảy ra khi (x,y)={(2,2),(-2,-2)}
*Min
2(x^2+y^2)=8+2xy
<=>3(x^2+y^2)=8+x^2+y^2+2xy
<=>3A=8+(x+y)^2
<=>A\(\ge\)8/3
Dấu bằng xảy ra khi (x,y)={(\(\frac{\sqrt{2}}{3},-\frac{\sqrt{2}}{3}\)),(\(-\frac{\sqrt{2}}{3},\frac{\sqrt{2}}{3}\))}
-Nguồn: Tìm giá trị nhỏ nhất của - Bài tập Toán học Lớp 8 - | Lazi.vn - Kết nối tri thức - Giải đáp vấn đề của bạn
-Cách khác tham khảo :Câu hỏi tương tự