Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:
\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)
Dấu "=" xảy ra khi x = y = z = 1/3
Vậy A min = 3/4 khi x=y=z=1/3
x,y,z không âm thỏa mãn
\(1\ge\frac{1}{x+1}+\frac{1}{y+2}+\frac{1}{z+3}\ge\frac{9}{x+y+z+6}\Leftrightarrow x+y+z\ge3\)
\(P=\frac{a+b+c}{9}+\frac{1}{a+b+c}+\frac{8\left(a+b+c\right)}{9}\ge2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
P min = 10/3 khi a+b+c = 3
Tìm max:
Áp đụng bất đẳng thức AM-GM ta có:
\(\left(x+y\right)+z\le\frac{\left(x+y\right)^2+1}{2}+\frac{z^2+1}{2}=\frac{x^2+y^2+z^2+2xy+2}{2}=2+xy\)
Chứng minh tương tự ta có: \(2+xz\ge x+y+z;2+yz\ge x+y+z\)
Từ trên ta lại có: \(P=\frac{x}{2+yz}+\frac{y}{2+zx}+\frac{z}{2+xy}\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=1\\z=0\end{cases}}\)
\(\Rightarrow Max_P=1\)
Tìm Min
Áp BĐT Cauchy - Schwaz ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)+3xyz}\left(1\right)\)
Đặt \(t=x+y+z\left(\sqrt{2}\le t\le\sqrt{6}\right)\)
Mặt khác ta có: \(9xyz\le\left(x+y+z\right)\left(xy+yz+xz\right)=\frac{t\left(t^2-2\right)}{2}\)
Kết hợp với \(\left(1\right)\Rightarrow P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)+3xyz}\ge\frac{6t}{t^2+10}\) Luôn đúng với \(\sqrt{2}\le t\le\sqrt{6}\)
Dấu đẳng thức xảy ra chẳng hạn khi \(\hept{\begin{cases}x=\sqrt{2}\\y=z=0\end{cases}}\)
\(\Rightarrow Min_P=\frac{\sqrt{2}}{2}\)
Vậy ...........
Bạn Băng Băng ơi, BD9T AM - GM là bất đẳng thức Cô - si đúng không bạn ?
b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz)
\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)
a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky)
\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)
\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)
Dấu "=" xảy ra <=> x = y = z = 2/3