Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) b)
Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)
\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)
\(ab+bc+ac=-60:2=-30\)
a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)
= (x+y)^3
= 1^3 =1
b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac
9^2 = 141 +2(ab+bc+ac)
-60 = 2(ab+bc+ac)
ab+ac+bc=-30
Vậy M=-30
c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)
= x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3
= x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3
= 0
Vậy N=0 .Chúc bạn học tốt.
a)\(\left(x+y\right)^2=x^2+2xy+y^2=81\Leftrightarrow x^2+y^2=81-2xy=81-2.14=53\)
b,c làm tương tự như ý a
x+y=9=>x=9-y thay x=9-y vào xy=14
=> (9-y).y=14
=> 9y-y^2 -14=0
=> 7y+2y-y^2-14=0
=> y(7-y)-2(7-y)=0
=>(7-y)(y-2)=0
=>y=2 hoặc 7
=> x=7 hoặc 2
=> (x;y)=(2,7);(7,2)
a.
x-y = 7-2 = 5
hoặc 2-7=-5
b. x^2+y^2= 7^2+2^2 =53
hoặc 2^2+7^2=53
c. x^3+y^3 = 7^3 +2^3 = 351
hoặc 2^3 +7^3 =351
d.x^4+y^4= 7^4 +2^4= 2417
hoặc 2^4+7^4=2417
Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath
1/Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)
\(\Rightarrow M=ab+bc+ca=\frac{\left(81-141\right)}{2}\)
Đề a,b bạn ghi mik ko hiểu
c)Ta có : \(x+y=a=>x^2+y^2+2xy=a^2\)
Mà \(x^2+y^2=b\)nên\(b+2xy=a^2=>xy=\frac{a^2-b}{2}\)
\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)
Thay \(x+y=a\) ; \(x^2+y^2=b\)và \(xy=\frac{a^2-b}{2}\)ta có : \(x^3+y^3=a\left(b-\frac{a^2-b}{2}\right)=ab-\frac{a^3-ab}{2}\)
ta có x+y=9, x.y=14=> x=9-y=14/y
nhân chéo ta có : 9y-y^2=14 <=> y^2+14-9y=0
<=> y^2-2y-7y+14=y(y-2)-7(y-2)=0
<=>(y-2)(y-7)=0
=> y=2 hoặc y=7
từ đó ta tính đc với y=2 thì x=7, với y=7 thì x=2
sau đó ta tính A, B, C dựa theo 2 trường hợp trên
a) Ta có \(\left(x-y\right)^2=x^2-2xy+y^2=\left(x^2+2xy+y^2\right)-4xy\)
\(=\left(x+y\right)^2-4xy=9^2-4.14=25\)
Vậy nên \(\orbr{\begin{cases}x-y=5\\x-y=-5\end{cases}}\)
b) \(x^2+y^2=\left(x^2+2xy+y^2\right)-2xy=\left(x+y\right)^2-2xy\)
\(=9^2-2.14=53\)
c) \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)
\(=9.\left(9^2-3.14\right)=351\)