Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{xy+x+y+2}{x+y+2}=\frac{xy}{x+y+2}+1\)
Đặt \(Q=\frac{x+y+2}{xy}=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\)
Ta có: \(4=x^2+y^2\ge2xy\Leftrightarrow xy\le2\)
\(\left(x+y\right)^2\le2\left(x^2+y^2\right)=8\Rightarrow x+y\le2\sqrt{2}\)
\(Q=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\ge\frac{4}{x+y}+\frac{2}{xy}\ge\frac{4}{2\sqrt{2}}+\frac{2}{2}=1+\sqrt{2}\)
Suy ra \(P\le\frac{1}{1+\sqrt{2}}+1=\frac{\sqrt{2}-1}{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}+1=\sqrt{2}\).
Dấu \(=\)khi \(x=y=\sqrt{2}\).
TL:
P=xy+x+y+2x+y+2 =xyx+y+2 +1
Đặt Q=x+y+2xy =1x +1y +2xy
Ta có: 4=x2+y2≥2xy⇔xy≤2
(x+y)2≤2(x2+y2)=8⇒x+y≤2√2
Q=1x +1y +2xy ≥4x+y +2xy ≥42√2 +22 =1+√2
Suy ra P≤11+√2 +1=√2−1(1+√2)(√2−1) +1=√2.
Dấu = khi x=y=√2.
^HT^
Ta co:
\(9=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\Rightarrow-3\sqrt{2}\le x+y\le3\sqrt{2}\)
Dat \(\hept{\begin{cases}a=x+y\\b=xy\end{cases}\left(a\ne-3,-3\sqrt{2}\le a\le3\sqrt{2}\right)}\)
\(\Rightarrow a^2-2b=9\Leftrightarrow\frac{a^2}{2}-\frac{9}{2}=b\)
\(\Rightarrow Q=\frac{b}{a+3}=\frac{a^2-9}{2a+6}=\frac{a-3}{2}=\frac{x+y-3}{2}\)
Xet \(0\le x+y\le3\sqrt{2}\)
\(\Rightarrow Q=\frac{x+y-3}{2}\le\frac{\sqrt{2\left(x^2+y^2\right)}-3}{2}=\frac{3\sqrt{2}-3}{2}\)
Dau '=' xay ra khi \(x=y=\frac{3}{\sqrt{2}}\)
Xet \(-3\sqrt{2}\le x+y< 0\)
\(\Rightarrow Q=\frac{x+y-3}{2}\ge\frac{-3\sqrt{2}-3}{2}\)
Dau '=' xay ra khi \(x=y=-\frac{3}{\sqrt{2}}\)
M đạt giá trị lớn nhất <=> \(\frac{1}{M}\) đạt giá trị nhỏ nhất
Do đó, ta xét :
\(\frac{1}{M}=\frac{x+y+2}{xy}=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\)
Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\), (dấu "=" xảy ra khi a = b) , ta có : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\ge\frac{4}{\sqrt{2\left(x^2+y^2\right)}}=\frac{4}{2\sqrt{2}}=\sqrt{2}\)
Lại có : \(x^2+y^2\ge2xy\Rightarrow\frac{2}{xy}\ge\frac{4}{x^2+y^2}=\frac{4}{4}=1\)
Suy ra \(\frac{1}{M}\ge\sqrt{2}+1\Rightarrow M\le\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
Dấu đẳng thức xảy ra khi \(\begin{cases}x=y\\x^2+y^2=4\end{cases}\) \(\Leftrightarrow x=y=\sqrt{2}\)
Vậy Max M = \(\sqrt{2}-1\) tại \(x=y=\sqrt{2}\)
Ta có x,y,z là các số thực dương
Khi đó : \(5\left(x^2+y^2+z^2\right)-9x\left(y+z\right)-18yz=0.\)
\(\Leftrightarrow5\frac{x^2}{\left(y+z\right)^2}+\frac{5\left(y^2+z^2\right)}{\left(y+z\right)^2}-\frac{9x}{y+z}-\frac{18yz}{\left(y+z\right)^2}=0\)
\(\Leftrightarrow5\left(\frac{x}{y+z}\right)^2-\frac{9x}{y+z}=\frac{18yz}{\left(y+z\right)^2}-\frac{5\left(y^2+z^2\right)}{\left(y+z\right)^2}\)
\(\le\frac{\frac{18\left(y+z\right)^2}{4}}{\left(y+z\right)^2}-\frac{\frac{5\left(y+z\right)^2}{2}}{\left(y+z\right)^2}=\frac{18}{4}-\frac{5}{2}=2.\)
\(\Rightarrow5\left(\frac{x}{y+z}\right)^2-9.\frac{x}{y+z}\le2.\)
Đặt \(\frac{x}{y+z}=a>0\)ta được \(5a^2-9a-2\le0\)
\(\Leftrightarrow5a^2-10a+a-2\le0\Leftrightarrow\left(5a+1\right)\left(a-2\right)\le0\)
Dễ thấy \(5a+1>0\)\(\Rightarrow a-2\le0\Leftrightarrow a\le2\Leftrightarrow\frac{x}{y+z}\le2.\)
Ta có: \(Q=\frac{2x-y-z}{y+z}=\frac{2x}{y+z}-1\le2.2-1=3\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}y=z\\\frac{x}{y+z}=2\end{cases}\Leftrightarrow x=4y=4z}\)
Vậy Giá trị lớn nhất của \(Q=3\Leftrightarrow x=4y=4z.\)
Bên học24 mình đã xài \(\Delta\) vậy bên này mình sẽ xài HĐT kiểu Cosi như ý bn :))
Áp dụng BĐT \(xy\le\frac{x^2+y^2}{2}\) ta có:
\(x^2+y^2=4+xy\le4+\frac{x^2+y^2}{2}\)
\(\Rightarrow A\le4+\frac{A}{2}\Rightarrow A\le8\)
Đẳng thức xảy ra khi \(x=y=\pm2\)
*)Nếu \(xy\ge0\Rightarrow A\ge4\)
*)Nếu \(xy< 0\). WLOG \(x>0;y< 0\). \(y\rightarrow-z\left(z>0\right)\)
Have \(\frac{A}{4}=\frac{x^2+y^2}{4}=\frac{x^2+y^2}{x^2+y^2-xy}\)
\(=1+\frac{xy}{x^2+y^2+xy}=1-\frac{zx}{x^2+z^2+xz}\)
Áp dụng BĐT AM-GM ta có:
\(\hept{\begin{cases}x^2+z^2\ge2xz\\x^2+z^2+xz\ge3xz\end{cases}}\)\(\Rightarrow\frac{xz}{x^2+z^2+zx}\le\frac{1}{3}\)
\(\Rightarrow\frac{A}{4}=1-\frac{zx}{x^2+z^2+xz}\ge1-\frac{1}{3}=\frac{2}{3}\Rightarrow A\ge\frac{8}{3}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x=\frac{2}{\sqrt{3}}\\y=-\frac{2}{\sqrt{3}}\end{cases}}\) hoặc \(\hept{\begin{cases}x=-\frac{2}{\sqrt{3}}\\y=\frac{2}{\sqrt{3}}\end{cases}}\)