Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có nhiều cách, có thể dùng đồng nhất hệ số để chứng minh số tìm được là số nguyên.
\(A=x^4-4x^3-2x^2+12x+9=x^4-2x^3-2x^3-3x^2-3x^2+4x^2+6x+6x+9\)
\(=x^4-2x^3-3x^2-2x^3+4x^2+6x-3x^2+6x+9=x^2\left(x^2-2x-3\right)-2x\left(x^2-2x-3\right)-3\left(x^2-2x-3\right)\)
\(\left(x^2-2x-3\right)\left(x^2-2x-3\right)=\left(x^2-2x-3\right)^2=\left(\left(x-3\right)\left(x+1\right)\right)^2\left(đpcm\right)\)
\(B=x^4+4x^2+9-2.2x.x^2+2.2x.3-2.3.x^2\)
\(=\left(x^2-2x-3\right)^2\)
\(B=x^4-3x^3-x^3+3x^2-5x^2+15x-3x+9\)
\(=\left(x-3\right)\left(x^3-x^2-5x-3\right)\)
\(=\left(x-3\right)\left(x^3-3x^2+2x^2-6x+x-3\right)\)
\(=\left(x-3\right)^2\left(x^2+2x+1\right)\)
\(=\left(x-3\right)^2\cdot\left(x+1\right)^2\) là bình phương của một số nguyên(đpcm)
\(B=x^2\left(x^2-2x-3\right)-2x\left(x^2-2x-3\right)-3\left(x^2-2x-3\right)\)
\(B=\left(x^2-2x-3\right)\left(x^2-2x-3\right)=\left(x^2-2x-3\right)^2\)=> DPCM
a,A=(x+1)(x+2)(x+3)(x+4)+1
=[(x+1)(x+4)][(x+2)(x+3)]+1
=(x2+5x+4)(x2+5x+6)
đặt x2+5x+5=a ta có
A=(a-1)(a+1)+1
=a2-1+1=a2
thay a =x2+5x+5 ta có A=(x2+5x+5)2
vì x nguyên nên x2+5x+5 nguyên
vậy A là bình phương của 1 số nguyên với mọi x nguyên
b,B=x4-4x3-2x2+12x+9
=x4+x3-5x3-5x2+3x2+3x+9x+9
=x3(x+1)-5x2(x+1)+3x(x+1)+9(x+1)
=(x+1)(x3-5x2+3x+9)
=(x+1)(x3+x2-6x2-6x+9x+9)
=(x+1)[x2(x+1)-6x(x+1)+9(x+1)]
=(x+1)(x+1)(x2-6x+9)
=(x+1)2(x+3)2
vì x nguyên nên x+1 nguyên;x+3 nguyên
vậy B là bình phương củ một số nguyên với mọi x nguyên
A=(x4−2x3−3x2)−(2x3−4x2−6x)−(3x2−6x−9)
=x2(x2−2x−3)−2x(x2−2x−3)−3(x2−2x−3)
=(x2−2x−3)(x2−2x−3)
=(x2−2x−3)2
⇒ A là SCP với mọi x nguyên
chúc học tốt!
B3 : t chỉ m r á :3
B4 :
Ta có :
C= 4x ( x + y ) ( x + y + z ) ( y + z ) + y2x2
= 4x ( x + y + z ) ( x + y ) ( x + z ) + y2x2
= 4 ( x2 + xy + xz ) ( x2 + xy + xz + yz ) + y2x2
Đặt a = x2 + xy + xz và b= yz , ta có :
⇒ C = 4a( a + b ) + b2
= b2 + 4ab + 4a2
= ( b + a )2
⇒ C là số chính phương
Chúc mừng m đã ghi xong bài , nhớ tick cho t nhoa bff!
\(A=x^4-4x^3-2x^2+12x+9\\ =x^2\left(x^2-4x-2+\dfrac{12}{x}+\dfrac{9}{x^2}\right)\\ =x^2\left[\left(x^2-6+\dfrac{9}{x^2}\right)-\left(4x-\dfrac{12}{x}\right)+4\right]\\ =x^2\left(x-\dfrac{3}{x}-2\right)^2\\ =\left[x\left(x-\dfrac{3}{x}-2\right)\right]^2\\ =\left(x^2-3-2x\right)^2\)
Do \(x\in Z\) nên \(\Rightarrow x^2-3-2x\) là số nguyên.
Vậy \(A=\left(x^2-3-2x\right)^2\)là bình phương 1 số nguyên.