Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 5a + 2b ⋮ 13
⇔ 5a + 2b + 13a ⋮ 13
⇔ 18a +2b ⋮ 13
⇔ 2 ( 9a + b) ⋮ 13
⇔ 9a + b ⋮ 13
Vậy 5a + 2b ⋮ 13 ⇔ 9a + b ⋮ 13 ( a,b ∈ Z )
Sr nhé t chx học dạng này cx k bt trình bày như thế này đc chx
Chỉ trình bày theo ý hiểu thôi
@@Học tốt @@
Chiyuki Fujito
Tái bút : À mà kí hiệu này là s Σ ạ
Câu 2:
a) Ta có: \(x^4\ge0\forall x\)
\(3x^2\ge0\)
Do đó: \(x^4+3x^2\ge0\forall x\)
\(\Rightarrow x^4+3x^2+2\ge2\forall x\)
Dấu '=' xảy ra khi
\(x^4+3x^2=0\Leftrightarrow x^2\left(x^2+3\right)=0\)
Vì \(x^2\ge0\forall x\)
nên \(x^2+3\ge3>0\forall x\)
Do đó: \(x^2=0\Leftrightarrow x=0\)
Vậy: GTNN của biểu thức \(A=x^4+3x^2+2\) là 2 khi x=0
b)\(B=\left(x^4+5\right)^2\)
Ta có: \(x^4\ge0\forall x\)
\(\Rightarrow x^4+5\ge5\forall x\)
\(\Rightarrow\left(x^4+5\right)^2\ge25\forall x\)
Dấu '=' xảy ra khi
\(x^4+5=5\Leftrightarrow x^4=0\Leftrightarrow x=0\)
Vậy: GTNN của biểu thức \(B=\left(x^4+5\right)^2\) là 25 khi x=0
c) \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall y\)
Do đó: \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2-2\ge-2\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy: GTNN của biểu thức \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\) là -2 khi x=1 và y=-2
Câu 3:
a) \(A=5-3\left(2x-1\right)^2\)
Ta có: \(A=5-3\left(2x-1\right)^2=-3\left(2x-1\right)^2+5\)
Ta có: \(\left(2x-1\right)^2\ge0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi
\(\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
Vậy: GTLN của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\frac{1}{2}\)
b) \(B=\frac{1}{2\left(x-1\right)^2+3}\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2+3\ge3\forall x\)
\(\Rightarrow\frac{1}{2\left(x-1\right)^2+3}\le\frac{1}{3}\forall x\)
Dấu '=' xảy ra khi
\(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy: GTLN của biểu thức \(B=\frac{1}{2\left(x-1\right)^2+3}\) là \(\frac{1}{3}\) khi x=1
c) \(C=\frac{x^2+8}{x^2+2}\)
Ta có: \(C=\frac{x^2+8}{x^2+2}=\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)
Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+2\ge2\forall x\)
\(\Rightarrow\frac{6}{x^2+2}\le3\forall x\)
\(\Rightarrow1+\frac{6}{x^2+2}\le4\forall x\)
Dấu '=' xảy ra khi
\(x^2=0\Leftrightarrow x=0\)
Vậy: Giá trị lớn nhất của biểu thức \(C=\frac{x^2+8}{x^2+2}\) là 4 khi x=0
Bài làm:
a) Ta có: \(P\left(x\right)=0\)
\(\Leftrightarrow3x^2+x-2=0\)
\(\Leftrightarrow\left(3x^2+3x\right)-\left(2x+2\right)=0\)
\(\Leftrightarrow3x\left(x+1\right)-2\left(x+1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-1\end{cases}}\)
Vậy \(x=\frac{2}{3}\) và \(x=-1\) là nghiệm của đa thức P(x)
b) \(P\left(x\right)\ne0\Leftrightarrow\left(3x-2\right)\left(x+1\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}3x-2\ne0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne-1\end{cases}}\)
Vậy khi \(x\ne\left\{-1;\frac{2}{3}\right\}\) thì đa thức P(x) khác 0
c) Ta có: \(P\left(x\right)=3x^2+x-2=x\left(x+3\right)-2\)
Mà \(x\left(x+3\right)\) luôn chẵn với mọi x nguyên
=> \(x\left(x+3\right)-2⋮2\left(\forall x\inℤ\right)\)
\(\Rightarrow P\left(x\right)⋮2\left(\forall x\inℤ\right)\)
a. \(P\left(x\right)=3x^2+x-2=0\)
\(\Leftrightarrow\left(3x^2+3x\right)-\left(2x+2\right)=0\)
\(\Leftrightarrow3x\left(x+1\right)-2\left(x+1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=2\\x=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-1\end{cases}}}\)
Đa thức P ( x ) có các nghiệm x là 2/3 và -1
b. Để \(P\left(x\right)\ne0\) thì x khác các nghiệm : 2/3 và -1 ( câu a )
Ý bạn là $a\in Z$?
Để $x\in Z$ thì $\dfrac{a+11}{2}\in Z$
$=>a+11\vdots 2$
=> a chia 2 dư 1.
Vậy để $x\in Z$ thì a chia 2 dư 1 và $a\in Z$
Để \(x\in Z\)
\(a+11⋮2\)
\(a+1+10⋮2\)
\(\Leftrightarrow a+1⋮2\)
\(\Leftrightarrow a\in Z;a\)lẻ