\(P\left(x\right)=3x^2+x-2\)

a) Tìm nghiệm của P(x)

b) Tìm x để ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2020

Bài làm:

a) Ta có: \(P\left(x\right)=0\)

\(\Leftrightarrow3x^2+x-2=0\)

\(\Leftrightarrow\left(3x^2+3x\right)-\left(2x+2\right)=0\)

\(\Leftrightarrow3x\left(x+1\right)-2\left(x+1\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-1\end{cases}}\)

Vậy \(x=\frac{2}{3}\) và \(x=-1\) là nghiệm của đa thức P(x)

b) \(P\left(x\right)\ne0\Leftrightarrow\left(3x-2\right)\left(x+1\right)\ne0\)

\(\Leftrightarrow\hept{\begin{cases}3x-2\ne0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne-1\end{cases}}\)

Vậy khi \(x\ne\left\{-1;\frac{2}{3}\right\}\) thì đa thức P(x) khác 0

c) Ta có: \(P\left(x\right)=3x^2+x-2=x\left(x+3\right)-2\)

Mà \(x\left(x+3\right)\) luôn chẵn với mọi x nguyên

=> \(x\left(x+3\right)-2⋮2\left(\forall x\inℤ\right)\)

\(\Rightarrow P\left(x\right)⋮2\left(\forall x\inℤ\right)\)

1 tháng 8 2020

a. \(P\left(x\right)=3x^2+x-2=0\)

\(\Leftrightarrow\left(3x^2+3x\right)-\left(2x+2\right)=0\)

\(\Leftrightarrow3x\left(x+1\right)-2\left(x+1\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=2\\x=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-1\end{cases}}}\)

Đa thức P ( x ) có các nghiệm x là 2/3 và -1

b. Để  \(P\left(x\right)\ne0\) thì x khác các nghiệm : 2/3 và -1 ( câu a )
 

4 tháng 2 2018

lu ngu

1 tháng 7 2018

\(a)\) \(A=x\left(x^3-1\right)-x^2\left(x^2+1\right)-5\left(x-1\right)\)

\(A=x^4-x-x^4-x^2-5x+5\)

\(A=-x^2-6x+5\)

Vậy \(A=-x^2-6x+5\)

\(B=4x\left(x+2\right)-8\left(x+4\right)-4\)

\(B=4x^2+8x-8x-32-4\)

\(B=4x^2-36\)

Vậy \(B=4x^2-36\)

\(b)\) Ta có : 

\(A=-x^2-6x+5\)

\(-A=x^2+6x-5\)

\(-A=\left(x^2+6x+9\right)-14\)

\(-A=\left(x+3\right)^2-14\ge-14\)

\(A=-\left(x+3\right)^2+14\le14\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+3\right)^2=0\)

\(\Leftrightarrow\)\(x+3=0\)

\(\Leftrightarrow\)\(x=-3\)

Vậy GTLN của \(A\) là \(14\) khi \(x=-3\)

Chúc bạn học tốt ~ 

20 tháng 4 2017

1) a) x=0 hoặc x=4 hoặc x=-4

b) x=-3 hoặc x=1 hoặc x=-1

c) x=1 hoặc x=4

d) x=1 hoặc x=-1/6

2) a) m(x) = 3x

b) x=-2 hoặc x=-1

5 tháng 4 2017

Bài 1:
a) \(x^2+7x-8=x^2+2.x.\frac{7}{2}+\frac{49}{4}-\frac{81}{4}\)

\(=\left(x+\frac{7}{2}\right)^2-\frac{81}{4}=0\)

\(\Rightarrow\left(x+\frac{7}{2}\right)^2=\frac{81}{4}\)

\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{2}=\frac{9}{2}\\x+\frac{7}{2}=\frac{-9}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}}\)

Vậy nghiệm của đa thức m(x) là 1 hoặc -8

b) \(\left(x-3\right)\left(16-4x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\16-4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)

Vậy nghiệm của đa thức g(x) là 3 hoặc 4

c) \(5x^2+9x+4=0\)

\(\Rightarrow x^2+\frac{9}{5}x+\frac{4}{5}=0\)

\(\Rightarrow x^2+2x.\frac{9}{10}+\frac{81}{100}-\frac{1}{100}=0\)

\(\Rightarrow\left(x+\frac{9}{10}\right)^2-\frac{1}{100}=0\)

\(\Rightarrow\left(x+\frac{9}{10}\right)^2=\frac{1}{100}\)

\(\Rightarrow\orbr{\begin{cases}x+\frac{9}{10}=\frac{1}{10}\\x+\frac{9}{10}=\frac{-1}{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=-1\end{cases}}\)

Vậy...

a: P(x)=0

=>4x-1/2=0

=>x=1/8

b: Q(x)=0

=>(x-1)(x+1)=0

=>x=1 hoặc x=-1

c: A(x)=0

=>-12x+18=0

=>-12x=-18

hay x=3/2

d: B(x)=0

=>-x2=-16

=>x=4 hoặc x=-4

e: C(x)=0

=>3x2=-12

=>\(x\in\varnothing\)

6 tháng 5 2018

C1:Chương IV : Biểu thức đại số

6 tháng 5 2018

C2: Có sai sót j mong bn thông cảm! Viết hơi ẩu ☺Chương IV : Biểu thức đại số

29 tháng 3 2020

Bài 3 :

1. Thay x = -5 vào f(x) ta được :

\(\left(-5\right)^2-4\left(-5\right)+5=50\)

Vậy x = -5 không là nghiệm của đa thức trên .

Bài 2 :

1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)

=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)

=> \(f_{\left(x\right)}=x^2+4\)

=> \(x^2+4=0\)

Vậy đa thức trên vô nghiệm .

2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)

=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)

=> \(g_{\left(x\right)}=0\)

Vậy đa thức trên vô số nghiệm .

3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)

=> \(h_{\left(x\right)}=x^2-x+1\)

=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)

Vậy đa thức vô nghiệm .

29 tháng 3 2020

Bài 3:

\(f\left(x\right)=x^2+4x-5.\)

+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:

\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)

\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)

\(\Rightarrow f\left(x\right)=25-20-5\)

\(\Rightarrow f\left(x\right)=5-5\)

\(\Rightarrow f\left(x\right)=0.\)

Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)

Chúc bạn học tốt!

a: M(x)=0

=>(-3x+6)(-2x+5)=0

=>x=2 hoặc x=5/2

b: N(x)=0

=>x(x+1)=0

=>x=0 hoặc x=-1

c: A(x)=0

=>3x-3=0

hay x=1