Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét △MEA vuông tại E và △MFC vuông tại F
Có: MA = MC (gt)
EMA = FMC (2 góc đối đỉnh)
=> △MEA = △MFC (ch-gn)
=> ME = MF (2 cạnh tương ứng)
b, Ta có: BE = BM - ME và BF = BM + MF
=> BE + BF = BM - ME + BM + MF
=> BE + BF = (BM + BM) - (ME - MF)
=> BE + BF= 2BM
c, Xét △ABM vuông tại A có: AB < BM (quan hệ cạnh)
d, Ta có: BE + BF = 2BM
=> (BE + BF) : 2 = BM
Lại có: AB < BM (cmt)
=> AB < (BE + BF) : 2
định lý thường nói : nếu trong 1 tam giác có tông độ dài hai cạnh luôn luôn lớn hơn cạnh còn lại
bạn dựa vào định lý đó để chứng minh
thanks
chín phần hai mươi đề xi mét khối băng bao nhiêu xăng ti mét khối
Vì sao?
Trong ΔABM, ta có ∠(BAM) = 90o
Suy ra: AB < BM (trong tam giác vuông cạnh huyền lớn nhất)
Mà BM = BE + EM = BF - MF
Suy ra: AB < BE + EM
AB < BF - FM
Suy ra:AB + AB < BE + ME + BF - MF (1)
Xét hai tam giác vuông AEM và CFM, ta có:
∠(AEM) = ∠(CFM) = 90o
AM = CM (gt)
∠(AME) = ∠(CMF) (đối đỉnh)
Suy ra: ΔAEM = ΔCFM (cạnh huyền - góc nhọn)
Suy ra: ME = MF (2)
Từ (1) và (2) suy ra: AB + AB < BE + BF
Suy ra: 2AB < BE + BF
Vậy AB < (BE + BF) / 2 .
a: Xét ΔMEA vuông tại E và ΔMFC vuông tại F có
MA=MC
góc AME=góc CMF
=>ΔMEA=ΔMFC
=>ME=MF
b: BE+BF
=BE+BE+EF
=BE+BE+2*ME
=2*BE+2*ME
=2*BM
c: ΔAMB vuông tại A
=>AB<BM