\(AB^2+CD^2+BC^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

A D E C I B J H K M O

  1. vÌ H là trực tâm của tam giác ABC , \(BD⊥BC,CE⊥AB\Rightarrow\widehat{BEC}=\widehat{BDC}=90^0\) nên BCDE nội tiếp đường tròn đường kính BC. Tâm đường tròn nội tiếp BCDE là J ( trung điểm BC)
  2. I đối xứng với A qua O => AI là đường kính của đường tròn tâm O =>\(\widehat{ACI}=\widehat{ABI}=90^0\)\(\hept{\begin{cases}BD⊥AC\\CI⊥AC\end{cases}\Rightarrow BD}\downarrow\uparrow CI\left(1\right)\) VÀ\(\hept{\begin{cases}CE⊥AB\\BI⊥AB\end{cases}\Rightarrow CE\uparrow\downarrow BI\left(2\right)}\)Từ (1) và (2) BHCI là hình bình hành,mà J LÀ Trung điểm của BC nên J là giao điểm của hai đường chéo HI và BC của hbh BICH nên ta có I,J,H thẳng hàng (DPCM)
  3. Vì BCDE là tứ giác nội tiếp nên \(\widehat{ABC}=\widehat{ADK}\left(3\right)\)mặt khác ABIC nội tiếp (O) nên \(\widehat{IAC}=\widehat{IBC}\left(4\right)\)ta lại có \(BI⊥AB\Rightarrow\widehat{ABC}+\widehat{IBC}=90^O\left(5\right)\)TỪ 3,4,5 ta có \(\widehat{IAC}+\widehat{ADK}=90^O\)hay \(DE⊥AM\Rightarrow\Delta ADM\)vuông tại D và có DE là đường cao tương ứng tại D nên theo hệ thức lượng trong tam giác vuông có (DPCM) \(\frac{1}{DK^2}=\frac{1}{DA^2}+\frac{1}{DM^2}\)
14 tháng 5 2017

a) Áp dụng hệ quả định lý thales:

\(\frac{MQ}{CD}+\frac{MP}{AB}=\frac{AM}{AC}+\frac{MC}{AC}=\frac{AC}{AC}=1\)

Áp dụng BĐT bunyakovsky:

\(\left(\frac{1}{AB^2}+\frac{1}{CD^2}\right)\left(MP^2+MQ^2\right)\ge\left(\frac{MP}{AB}+\frac{MQ}{CD}\right)^2=1\)

\(\Rightarrow\frac{1}{AB^2}+\frac{1}{CD^2}\ge\frac{1}{MP^2+MQ^2}\)

dấu = xảy ra khi \(\frac{MC}{AM}=\frac{CD^2}{AB^2}\)

b) chưa nghĩ :v

1:

ΔOAB vuông tại O

=>AB^2=AO^2+BO^2

ΔBOC vuông tại O

=>BC^2=BO^2+CO^2

ΔAOD vuông tại O

=>AD^2=AO^2+DO^2

ΔDOC vuông tại O

=>DC^2=OC^2+OD^2

AB^2+BC^2+CD^2+DA^2

=OA^2+OB^2+OC^2+OD^2+OA^2+OB^2+OC^2+OD^2

=2(OA^2+OB^2+OC^2+OD^2)

2:

AB^2+CD^2

=OA^2+OB^2+OC^2+OD^2

=OA^2+OD^2+OB^2+OC^2

=AD^2+BC^2

4 tháng 2 2019

O A C B D I M N E F P H

a) Kẻ đường kính DP của (O), ta có: BD vuông góc BP. Mà BD vuông góc AC nên BP // AC

=> (AP = (BC => (AB = (CP => AB = CP => AB2 + CD2 = CP2 + CD2 = DP2 = 4R2 (ĐL Pytagore)

Tương tự: AD2 + BC2 = 4R2 => ĐPCM.

b) Ta có: AB2 + BC2 + CD2 + DA2 = 4R2 + 4R2 = 8R2 

Ta lại có: AC2 + BD2 = IA2 + IB2 + IC2 + ID2 + 2.IB.ID + 2.IA.IC = AB2 + CD2 + 4.IE.IF

= 4R2 + 4(R+d)(R-d) = 4R2 + 4R2 - 4d2 = 8R2 - 4d2 

c) Gọi tia NI cắt AB tại H. Dễ thấy: ^BIH = ^NID = ^NDI = ^IAB = 900 - ^IBA => IN vuông góc AB.

C/m tương tự, ta có: IM vuông góc CD => ĐPCM.

d) Đường tròn (O): Dây AB, M trung điểm AB => OM vuông góc AB. Mà AB vuông góc IN => OM // IN

Tương tự ON // IM. Do đó: Tứ giác OMIN là hình bình hành (đpcm).

e) Vì tứ giác OMIN là hình bình hành nên MN đi qua trung điểm OI. Mà OI cố định NÊN trung điểm của OI cũng cố định nên ta có đpcm.

4 tháng 2 2019

Chậc -_- bài này mình làm được lâu rồi bạn à :V Nhưng cũng cảm ơn , tớ nhờ cậu bài khác mà :(

A B D C M

Nối BM
Xét tam giác BMD vuông tại D, có: BD2 = BM2 - MD2 (1)
Xét tam giác MCD vuông tại D, có: DC2 = MC2- MD2 (2)
Từ (1) và (2) => BD2 - DC2 = BM2- MD2 - MC2 + MD2 = BM2 - MC2 = BM2 - AM2 (vì AM=CM) = AB2

=> AB2 = BD2- DC2 (đpcm)

22 tháng 8 2015

ta co

AB2=OA2+OB2 ( dinh ly pitago tam giac vuong AOB)

CD2=OD2+OC2 ( dinh ly pitogo tam giac vuong OCD)

-> AB2+CD2= OA2+OB2+OD2+OC2

ma OA2+OD2= AD2 ( dinh ly pitago tam giac vuong AOD)

      OB2+OC2=BC2 ( dinh ly pitago tam giac vuong OBC)

nen AB2+CD2=AD2+BC2